Do you want to publish a course? Click here

Freeze-In Dark Matter from a sub-Higgs Mass Clockwork Sector via the Higgs Portal

184   0   0.0 ( 0 )
 Added by Jinsu Kim
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The clockwork mechanism allows extremely weak interactions and small mass scales to be understood in terms of the structure of a theory. A natural application of the clockwork mechanism is to the freeze-in mechanism for dark matter production. Here we consider a Higgs portal freeze-in dark matter model based on a scalar clockwork sector with a mass scale which is less than the Higgs boson mass. The dark matter scalar is the lightest scalar of the clockwork sector. Freeze-in dark matter is produced by the decay of thermal Higgs bosons to the clockwork dark matter scalars. We show that the mass of the dark matter scalar is typically in the 1-10 keV range and may be warm enough to have an observable effect on perturbation growth and Lyman-$alpha$ observations. Clockwork Higgs portal freeze-in models have a potentially observable collider phenomenology, with the Higgs boson decaying to missing energy in the form of pairs of long-lived clockwork sector scalars, plus a distribution of different numbers of quark and lepton particle-antiparticle pairs. The branching ratio to different numbers of quark and lepton pairs is determined by the clockwork sector parameters (the number of clockwork scalars $N$ and the clockwork charge $q$), which could therefore be determined experimentally if such Higgs decay modes are observed. In the case of a minimal Standard Model observable sector, the combination of nucleosynthesis and Lyman-$alpha$ constraints is likely to exclude on-shell Higgs decays to clockwork scalars, although off-shell Higgs decays would still be possible. On-shell Higgs decays to clockwork scalars can be consistent with cosmological constraints in simple extensions of the Standard Model with light singlet scalars.



rate research

Read More

Sterile neutrinos are one of the leading dark matter candidates. Their masses may originate from a vacuum expectation value of a scalar field. If the sterile neutrino couplings are very small and their direct coupling to the inflaton is forbidden by the lepton number symmetry, the leading dark matter production mechanism is the freeze-in scenario. We study this possibility in the neutrino mass range up to 1 GeV, taking into account relativistic production rates based on the Bose-Einstein statistics, thermal masses and phase transition effects. The specifics of the production mechanism and the dominant mode depend on the relation between the scalar and sterile neutrino masses as well as on whether or not the scalar is thermalized. We find that the observed dark matter abundance can be produced in all of the cases considered. We also revisit the freeze-in production of a Higgs portal scalar, pointing out the importance of a fusion mode, as well as the thermalization constraints.
104 - Mathias Becker 2018
We investigate a minimal neutrino portal dark matter (DM) model where a right-handed neutrino both generates the observed neutrino masses and mediates between the SM and the dark sector, which consists of a fermion and a boson. In contrast to earlier work, we explore regions of the parameter space where DM is produced via freeze-in instead of freeze-out motivated by the small neutrino Yukawa couplings in case of $mathcal{O} left( mathrm{TeV} right)$ heavy neutrinos. For a non-resonant production of DM, its energy density is independent of the DM mass. Assuming a democratic coupling structure we find $M_N approx 10 , mathrm{TeV}$. For the resonant production of DM, we find that it can be produced via freeze-in or freeze-out even with couplings of $mathcal{O} left( 10^{-5} right)$. However, the measurement of the Lyman-$alpha$ forest rules out the feeble coupled freeze-out case completely, while the resonant freeze-in production is only viable for $m_{DM} gtrsim 3 , mathring{keV}$.
Searches for invisible Higgs decays at the Large Hadron Collider constrain dark matter Higgs-portal models, where dark matter interacts with the Standard Model fields via the Higgs boson. While these searches complement dark matter direct-detection experiments, a comparison of the two limits depends on the coupling of the Higgs boson to the nucleons forming the direct-detection nuclear target, typically parameterized in a single quantity $f_N$. We evaluate $f_N$ using recent phenomenological and lattice-QCD calculations, and include for the first time the coupling of the Higgs boson to two nucleons via pion-exchange currents. We observe a partial cancellation for Higgs-portal models that makes the two-nucleon contribution anomalously small. Our results, summarized as $f_N=0.308(18)$, show that the uncertainty of the Higgs-nucleon coupling has been vastly overestimated in the past. The improved limits highlight that state-of-the-art nuclear physics input is key to fully exploiting experimental searches.
The correlation between the invisible Higgs branching ratio ($B_h^{rm inv} $) vs. dark matter (DM) direct detection ($sigma_p^{rm SI}$) in Higgs portal DM models is usually presented in the effective field theory (EFT) framework. This is fine for singlet scalar DM, but not in the singlet fermion DM (SFDM) or vector DM (VDM) models. In this paper, we derive the explicit expressions for this correlation within UV completions of SFDM and VDM models with Higgs portals, and discuss the limitation of the EFT approach. We show that there are at least two additional hidden parameter in $sigma_p^{rm SI}$ in the UV completions: the singlet-like scalar mass $m_2$ and its mixing angle $alpha$ with the SM Higgs boson ($h$). In particular, if the singlet-like scalar is lighter than the SM Higgs boson ($m_2 < m_h cos alpha / sqrt{1 + cos^2 alpha}$), the collider bound becomes weaker than the one based on EFT.
We review scenarios in which the particles that account for the Dark Matter (DM) in the Universe interact only through their couplings with the Higgs sector of the theory, the so-called Higgs-portal models. In a first step, we use a general and model-independent approach in which the DM particles are singlets with spin $0,frac12$ or $1$, and assume a minimal Higgs sector with the presence of only the Standard Model (SM) Higgs particle observed at the LHC. In a second step, we discuss non-minimal scenarios in which the spin-$frac12$ DM particle is accompanied by additional lepton partners and consider several possibilities like sequential, singlet-doublet and vector-like leptons. In a third step, we examine the case in which it is the Higgs sector of the theory which is enlarged either by a singlet scalar or pseudoscalar field, an additional two Higgs doublet field or by both; in this case, the matter content is also extended in several ways. Finally, we investigate the case of supersymmetric extensions of the SM with neutralino DM, focusing on the possibility that the latter couples mainly to the neutral Higgs particles of the model which then serve as the main portals for DM phenomenology. In all these scenarios, we summarize and update the present constraints and future prospects from the collider physics perspective, namely from the determination of the SM Higgs properties at the LHC and the search for its invisible decays into DM, and the search for heavier Higgs bosons and the DM companion particles at high-energy colliders. We then compare these results with the constraints and prospects obtained from the cosmological relic abundance as well as from direct and indirect DM searches in astroparticle physics experiments. The complementarity of collider and astroparticle DM searches is investigated in all the considered models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا