Do you want to publish a course? Click here

An ensemble solver for segregated cardiovascular FSI

70   0   0.0 ( 0 )
 Added by Daniele Schiavazzi
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Computational models are increasingly used for diagnosis and treatment of cardiovascular disease. To provide a quantitative hemodynamic understanding that can be effectively used in the clinic, it is crucial to quantify the variability in the outputs from these models due to multiple sources of uncertainty. To quantify this variability, the analyst invariably needs to generate a large collection of high-fidelity model solutions, typically requiring a substantial computational effort. In this paper, we show how an explicit-in-time ensemble cardiovascular solver offers superior performance with respect to the embarrassingly parallel solution with implicit-in-time algorithms, typical of an inner-outer loop paradigm for non-intrusive uncertainty propagation. We discuss in detail the numerics and efficient distributed implementation of a segregated FSI cardiovascular solver on both CPU and GPU systems, and demonstrate its applicability to idealized and patient-specific cardiovascular models, analyzed under steady and pulsatile flow conditions.



rate research

Read More

118 - Hongpeng Sun 2020
Total generalization variation (TGV) is a very powerful and important regularization for various inverse problems and computer vision tasks. In this paper, we proposed a semismooth Newton based augmented Lagrangian method to solve this problem. The augmented Lagrangian method (also called as method of multipliers) is widely used for lots of smooth or nonsmooth variational problems. However, its efficiency usually heavily depends on solving the coupled and nonlinear system together and simultaneously, which is very complicated and highly coupled for total generalization variation. With efficient primal-dual semismooth Newton methods for the complicated linear subproblems involving total generalized variation, we investigated a highly efficient and competitive algorithm compared to some efficient first-order method. With the analysis of the metric subregularities of the corresponding functions, we give both the global convergence and local linear convergence rate for the proposed augmented Lagrangian methods.
We developed a computational framework for simulating thin fluid flow in narrow interfaces between contacting solids, which is relevant for a range of engineering, biological and geophysical applications. The treatment of this problem requires coupling between fluid and solid mechanics equations, further complicated by contact constraints and potentially complex geometrical features of contacting surfaces. We developed a monolithic finite-element framework for handling mechanical contact, thin incompressible viscous flow and fluid-induced tractions on the surface of the solid, suitable for both one- and two-way coupling approaches. Additionally, we consider the possibility of fluid entrapment in pools delimited by contact patches and its pressurisation following a non-linear compressibility constitutive law. Furthermore, image analysis algorithms were adapted to identify the local status of each interface element within the Newton-Raphson loop. First, an application of the proposed framework for a problem with a model geometry is given, and the robustness is demonstrated by the residual-wise and status-wise convergence. The full capability of the developed two-way coupling framework is demonstrated on a problem of a fluid flow in contact interface between a solid with representative rough surface and a rigid flat. The evolution of the contact pressure, fluid flow pattern and the morphology of trapped fluid zones until the complete sealing of the interface is displayed. Additionally, we demonstrated an almost mesh-independent result of a refined post-processing approach to the real contact-area computation. The developed framework permits not only to study the evolution of effective properties of contact interfaces, but also to highlight the difference between one- and two-way coupling approaches and to quantify the effect of multiple trapped fluid pools on the coupled problem.
The optimization of porous infill structures via local volume constraints has become a popular approach in topology optimization. In some design settings, however, the iterative optimization process converges only slowly, or not at all even after several hundreds or thousands of iterations. This leads to regions in which a distinct binary design is difficult to achieve. Interpreting intermediate density values by applying a threshold results in large solid or void regions, leading to sub-optimal structures. We find that this convergence issue relates to the topology of the stress tensor field that is simulated when applying the same external forces on the solid design domain. In particular, low convergence is observed in regions around so-called trisector degenerate points. Based on this observation, we propose an automatic initialization process that prescribes the topological skeleton of the stress field into the material field as solid simulation elements. These elements guide the material deposition around the degenerate points, but can also be remodelled or removed during the optimization. We demonstrate significantly improved convergence rates in a number of use cases with complex stress topologies. The improved convergence is demonstrated for infill optimization under homogeneous as well as spatially varying local volume constraints.
This article presents numerical investigations on accuracy and convergence properties of several numerical approaches for simulating steady state flows in heterogeneous aquifers. Finite difference, finite element, discontinuous Galerkin, spectral, and random walk methods are tested on one- and two-dimensional benchmark flow problems. Realizations of log-normal hydraulic conductivity fields are generated by Kraichnan algorithms in closed form as finite sums of random periodic modes, which allow direct code verification by comparisons with manufactured reference solutions. The quality of the methods is assessed for increasing number of random modes and for increasing variance of the log-hydraulic conductivity fields with Gaussian and exponential correlation. Experimental orders of convergence are calculated from successive refinements of the grid. The numerical methods are further validated by comparisons between statistical inferences obtained from Monte Carlo ensembles of numerical solutions and theoretical first-order perturbation results. It is found that while for Gaussian correlation of the log-conductivity field all the methods perform well, in the exponential case their accuracy deteriorates and, for large variance and number of modes, the benchmark problems are practically not tractable with reasonably large computing resources, for all the methods considered in this study.
56 - Zhiwei He 2020
In this paper, based on the idea of self-adjusting steepness based schemes[5], a two-dimensional calculation method of steepness parameter is proposed, and thus a two-dimensional self-adjusting steepness based limiter is constructed. With the application of such limiter to the over-intersection based remapping framework, a low dissipation remapping method has been proposed that can be applied to the existing ALE method.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا