Do you want to publish a course? Click here

Benchmark for numerical solutions of flow in heterogeneous groundwater formations

134   0   0.0 ( 0 )
 Added by Imre Boros
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

This article presents numerical investigations on accuracy and convergence properties of several numerical approaches for simulating steady state flows in heterogeneous aquifers. Finite difference, finite element, discontinuous Galerkin, spectral, and random walk methods are tested on one- and two-dimensional benchmark flow problems. Realizations of log-normal hydraulic conductivity fields are generated by Kraichnan algorithms in closed form as finite sums of random periodic modes, which allow direct code verification by comparisons with manufactured reference solutions. The quality of the methods is assessed for increasing number of random modes and for increasing variance of the log-hydraulic conductivity fields with Gaussian and exponential correlation. Experimental orders of convergence are calculated from successive refinements of the grid. The numerical methods are further validated by comparisons between statistical inferences obtained from Monte Carlo ensembles of numerical solutions and theoretical first-order perturbation results. It is found that while for Gaussian correlation of the log-conductivity field all the methods perform well, in the exponential case their accuracy deteriorates and, for large variance and number of modes, the benchmark problems are practically not tractable with reasonably large computing resources, for all the methods considered in this study.



rate research

Read More

We developed a computational framework for simulating thin fluid flow in narrow interfaces between contacting solids, which is relevant for a range of engineering, biological and geophysical applications. The treatment of this problem requires coupling between fluid and solid mechanics equations, further complicated by contact constraints and potentially complex geometrical features of contacting surfaces. We developed a monolithic finite-element framework for handling mechanical contact, thin incompressible viscous flow and fluid-induced tractions on the surface of the solid, suitable for both one- and two-way coupling approaches. Additionally, we consider the possibility of fluid entrapment in pools delimited by contact patches and its pressurisation following a non-linear compressibility constitutive law. Furthermore, image analysis algorithms were adapted to identify the local status of each interface element within the Newton-Raphson loop. First, an application of the proposed framework for a problem with a model geometry is given, and the robustness is demonstrated by the residual-wise and status-wise convergence. The full capability of the developed two-way coupling framework is demonstrated on a problem of a fluid flow in contact interface between a solid with representative rough surface and a rigid flat. The evolution of the contact pressure, fluid flow pattern and the morphology of trapped fluid zones until the complete sealing of the interface is displayed. Additionally, we demonstrated an almost mesh-independent result of a refined post-processing approach to the real contact-area computation. The developed framework permits not only to study the evolution of effective properties of contact interfaces, but also to highlight the difference between one- and two-way coupling approaches and to quantify the effect of multiple trapped fluid pools on the coupled problem.
The flow of incompressible fluids through porous media plays a crucial role in many technological applications such as enhanced oil recovery and geological carbon-dioxide sequestration. The flow within numerous natural and synthetic porous materials that contain multiple scales of pores cannot be adequately described by the classical Darcy equations. It is for this reason that mathematical models for fluid flow in media with multiple scales of pores have been proposed in the literature. However, these models are analytically intractable for realistic problems. In this paper, a stabilized mixed four-field finite element formulation is presented to study the flow of an incompressible fluid in porous media exhibiting double porosity/permeability. The stabilization terms and the stabilization parameters are derived in a mathematically and thermodynamically consistent manner, and the computationally convenient equal-order interpolation of all the field variables is shown to be stable. A systematic error analysis is performed on the resulting stabilized weak formulation. Representative problems, patch tests and numerical convergence analyses are performed to illustrate the performance and convergence behavior of the proposed mixed formulation in the discrete setting. The accuracy of numerical solutions is assessed using the mathematical properties satisfied by the solutions of this double porosity/permeability model. Moreover, it is shown that the proposed framework can perform well under transient conditions and that it can capture well-known instabilities such as viscous fingering.
In the article a convergent numerical method for conservative solutions of the Hunter--Saxton equation is derived. The method is based on piecewise linear projections, followed by evolution along characteristics where the time step is chosen in order to prevent wave breaking. Convergence is obtained when the time step is proportional to the square root of the spatial step size, which is a milder restriction than the common CFL condition for conservation laws.
We consider the generalized Benjamin-Ono (gBO) equation on the real line, $ u_t + partial_x (-mathcal H u_{x} + tfrac1{m} u^m) = 0, x in mathbb R, m = 2,3,4,5$, and perform numerical study of its solutions. We first compute the ground state solution to $-Q -mathcal H Q^prime +frac1{m} Q^m = 0$ via Petviashvilis iteration method. We then investigate the behavior of solutions in the Benjamin-Ono ($m=2$) equation for initial data with different decay rates and show decoupling of the solution into a soliton and radiation, thus, providing confirmation to the soliton resolution conjecture in that equation. In the mBO equation ($m=3$), which is $L^2$-critical, we investigate solutions close to the ground state mass, and, in particular, we observe the formation of stable blow-up above it. Finally, we focus on the $L^2$-supercritical gBO equation with $m=4,5$. In that case we investigate the global vs finite time existence of solutions, and give numerical confirmation for the dichotomy conjecture, in particular, exhibiting blow-up phenomena in the supercritical setting.
We study a self-similar solution of the kinetic equation describing weak wave turbulence in Bose-Einstein condensates. This solution presumably corresponds to an asymptotic behavior of a spectrum evolving from a broad class of initial data, and it features a non-equilibrium finite-time condensation of the wave spectrum $n(omega)$ at the zero frequency $omega$. The self-similar solution is of the second kind, and it satisfies boundary conditions corresponding to a nonzero constant spectrum (with all its derivative being zero) at $omega=0$ and a power-law asymptotic $n(omega) to omega^{-x}$ at $omega to infty ;; xin mathbb{R}^+$. Finding it amounts to solving a nonlinear eigenvalue problem, i.e. finding the value $x^*$ of the exponent $x$ for which these two boundary conditions can be satisfied simultaneously. To solve this problem we develop a new high-precision algorithm based on Chebyshev approximations and double exponential formulas for evaluating the collision integral, as well as the iterative techniques for solving the integro-differential equation for the self-similar shape function. This procedures allow to achieve a solution with accuracy $approx 4.7 %$ which is realized for $x^* approx 1.22$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا