Do you want to publish a course? Click here

A second-order self-adjusting steepness based remapping method for arbitrary quadrilateral meshes

57   0   0.0 ( 0 )
 Added by Zhiwei He
 Publication date 2020
and research's language is English
 Authors Zhiwei He




Ask ChatGPT about the research

In this paper, based on the idea of self-adjusting steepness based schemes[5], a two-dimensional calculation method of steepness parameter is proposed, and thus a two-dimensional self-adjusting steepness based limiter is constructed. With the application of such limiter to the over-intersection based remapping framework, a low dissipation remapping method has been proposed that can be applied to the existing ALE method.



rate research

Read More

In this work, we develop a discretisation method for the mixed formulation of the magnetostatic problem supporting arbitrary orders and polyhedral meshes. The method is based on a global discrete de Rham (DDR) sequence, obtained by patching the local spaces constructed in [Di Pietro, Droniou, Rapetti, Fully discrete polynomial de Rham sequences of arbitrary degree on polygons and polyhedra, arXiv:1911.03616] by enforcing the single-valuedness of the components attached to the boundary of each element. The first main contribution of this paper is a proof of exactness relations for this global DDR sequence, obtained leveraging the exactness of the corresponding local sequence and a topological assembly of the mesh valid for domains that do not enclose any void. The second main contribution is the formulation and well-posedness analysis of the method, which includes the proof of uniform Poincare inequalities for the discrete divergence and curl operators. The convergence rate in the natural energy norm is numerically evaluated on standard and polyhedral meshes. When the DDR sequence of degree $kge 0$ is used, the error converges as $h^{k+1}$, with $h$ denoting the meshsize.
148 - Weiqi Chu , Xiantao Li 2021
Long-range interactions play a central role in electron transport. At the same time, they present a challenge for direct computer simulations, since sufficiently large portions of the bath have to be included in the computation to accurately compute the Coulomb potential. This article presents a reduced-order approach, by deriving an open quantum model for the reduced density-matrix. To treat the transient dynamics, the problem is placed in a reduced-order framework. The dynamics, described by the Liouville von Neumann equation, is projected to subspaces using a Petrov-Galerkin projection. In order to recover the global electron density profile as a vehicle to compute the Coulomb potential, we propose a domain decomposition approach, where the computational domain also includes segments of the bath that are selected using logarithmic grids. This approach leads to a multi-component self-energy that enters the effective Hamiltonian. We demonstrate the accuracy of the reduced model using a molecular junction built from a Lithium chains.
In this work we formally derive and prove the correctness of the algorithms and data structures in a parallel, distributed-memory, generic finite element framework that supports h-adaptivity on computational domains represented as forest-of-trees. The framework is grounded on a rich representation of the adaptive mesh suitable for generic finite elements that is built on top of a low-level, light-weight forest-of-trees data structure handled by a specialized, highly parallel adaptive meshing engine, for which we have identified the requirements it must fulfill to be coupled into our framework. Atop this two-layered mesh representation, we build the rest of data structures required for the numerical integration and assembly of the discrete system of linear equations. We consider algorithms that are suitable for both subassembled and fully-assembled distributed data layouts of linear system matrices. The proposed framework has been implemented within the FEMPAR scientific software library, using p4est as a practical forest-of-octrees demonstrator. A strong scaling study of this implementation when applied to Poisson and Maxwell problems reveals remarkable scalability up to 32.2K CPU cores and 482.2M degrees of freedom. Besides, a comparative performance study of FEMPAR and the state-of-the-art deal.ii finite element software shows at least comparative performance, and at most factor 2-3 improvements in the h-adaptive approximation of a Poisson problem with first- and second-order Lagrangian finite elements, respectively.
195 - Xin Xing , Xiaoxu Li , Lin Lin 2021
The calculation of the MP2 correlation energy for extended systems can be viewed as a multi-dimensional integral in the thermodynamic limit, and the standard method for evaluating the MP2 energy can be viewed as a trapezoidal quadrature scheme. We demonstrate that existing analysis neglects certain contributions due to the non-smoothness of the integrand, and may significantly underestimate finite-size errors. We propose a new staggered mesh method, which uses two staggered Monkhorst-Pack meshes for occupied and virtual orbitals, respectively, to compute the MP2 energy. The staggered mesh method circumvents a significant error source in the standard method, in which certain quadrature nodes are always placed on points where the integrand is discontinuous. One significant advantage of the proposed method is that there are no tunable parameters, and the additional numerical effort needed can be negligible compared to the standard MP2 calculation. Numerical results indicate that the staggered mesh method can be particularly advantageous for quasi-1D systems, as well as quasi-2D and 3D systems with certain symmetries.
We are interested in numerical algorithms for computing the electrical field generated by a charge distribution localized on scale $ell$ in an infinite heterogeneous medium, in a situation where the medium is only known in a box of diameter $Lggell$ around the support of the charge. We propose a boundary condition that with overwhelming probability is (near) optimal with respect to scaling in terms of $ell$ and $L$, in the setting where the medium is a sample from a stationary ensemble with a finite range of dependence (set to be unity and with the assumption that $ell gg 1$). The boundary condition is motivated by quantitative stochastic homogenization that allows for a multipole expansion [BGO20]. This work extends [LO21] from two to three dimensions, and thus we need to take quadrupoles, next to dipoles, into account. This in turn relies on stochastic estimates of second-order, next to first-order, correctors. These estimates are provided for finite range ensembles under consideration, based on an extension of the semi-group approach of [GO15].
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا