No Arabic abstract
Ginzburg-Landau theory of continuous phase transitions implicitly assumes that microscopic changes are negligible in determining the thermodynamic properties of the system. In this work we provide an example that clearly contrasts with this assumption. We show that topological frustration can change the nature of a second order quantum phase transition separating two different ordered phases. Even more remarkably, frustration is triggered simply by a suitable choice of boundary conditions in a 1D chain. While with every other BC each of two phases is characterized by its own local order parameter, with frustration no local order can survive. We construct string order parameters to distinguish the two phases, but, having proved that topological frustration is capable of altering the nature of a systems phase transition, our results pose a clear challenge to the current understanding of phase transitions in complex quantum systems.
In quantum many-body systems with local interactions, the effects of boundary conditions are considered to be negligible, at least for sufficiently large systems. Here we show an example of the opposite. We consider a spin chain with two competing interactions, set on a ring with an odd number of sites. When only the dominant interaction is antiferromagnetic, and thus induces topological frustration, the standard antiferromagnetic order (expressed by the magnetization) is destroyed. When also the second interaction turns from ferro to antiferro, an antiferromagnetic order characterized by a site-dependent magnetization which varies in space with an incommensurate pattern, emerges. This modulation results from a ground state degeneracy, which allows to break the translational invariance. The transition between the two cases is signaled by a discontinuity in the first derivative of the ground state energy and represents a quantum phase transition induced by a special choice of boundary conditions.
Recently it was highlighted that one-dimensional antiferromagnetic spin models with frustrated boundary conditions, i.e. periodic boundary conditions in a ring with an odd number of elements, may show very peculiar behavior. Indeed the presence of frustrated boundary conditions can destroy the magnetic order that characterizes such models when different boundary conditions are taken into account and induce novel phase transitions. Motivated by these results, we analyze the effects of the frustrated boundary conditions on several models supporting topological orders. In particular, we focus on the Cluster-Ising model, which presents a symmetry protected topologically ordered phase, and the Kitaev and AKLT chains that, on the contrary, are characterized by a purely topological order. In all these models we find that the different topological orders are not affected by the frustrated boundary conditions. This observation leads naturally to the conjecture that systems supporting topological order are resilient to topological frustration, and thus that topological phases could be identified through this resilience.
A central tenant in the classification of phases is that boundary conditions cannot affect the bulk properties of a system. In this work, we show striking, yet puzzling, evidence of a clear violation of this assumption. We use the prototypical example of an XYZ chain with no external field in a ring geometry with an odd number of sites and both ferromagnetic and antiferromagnetic interactions. In such a setting, even at finite sizes, we are able to calculate directly the spontaneous magnetizations that are traditionally used as order parameters to characterize the systems phases. When ferromagnetic interactions dominate, we recover magnetizations that in the thermodynamic limit lose any knowledge about the boundary conditions and are in complete agreement with standard expectations. On the contrary, when the system is governed by antiferromagnetic interactions, the magnetizations decay algebraically to zero with the system size and are not staggered, despite the AFM coupling. We term this behavior {it ferromagnetic mesoscopic magnetization}. Hence, in the antiferromagnetic regime, our results show an unexpected dependence of a local, one--spin expectation values on the boundary conditions, which is in contrast with predictions from the general theory.
We use Nielsens geometric approach to quantify the circuit complexity in a one-dimensional Kitaev chain across a topological phase transition. We find that the circuit complexities of both the ground states and non-equilibrium steady states of the Kitaev model exhibit non-analytical behaviors at the critical points, and thus can be used to detect both {it equilibrium} and {it dynamical} topological phase transitions. Moreover, we show that the locality property of the real-space optimal Hamiltonian connecting two different ground states depends crucially on whether the two states belong to the same or different phases. This provides a concrete example of classifying different gapped phases using Nielsens circuit complexity. We further generalize our results to a Kitaev chain with long-range pairing, and discuss generalizations to higher dimensions. Our result opens up a new avenue for using circuit complexity as a novel tool to understand quantum many-body systems.
Formation of quantum scars in many-body systems provides a novel mechanism for enhancing coherence of weakly entangled states. At the same time, coherence of edge modes in certain symmetry protected topological (SPT) phases can persist away from the ground state. In this work we show the existence of many-body scars and their implications on bulk coherence in such an SPT phase. To this end, we study the eigenstate properties and the dynamics of an interacting spin-$1/2$ chain with three-site cluster terms hosting a $mathbb{Z}_2 times mathbb{Z}_2$ SPT phase. Focusing on the weakly interacting regime, we find that eigenstates with volume-law entanglement coexist with area-law entangled eigenstates throughout the spectrum. We show that a subset of the latter can be constructed by virtue of repeated cluster excitations on the even or odd sublattice of the chain, resulting in an equidistant tower of states, analogous to the phenomenology of quantum many-body scars. We further demonstrate that these scarred eigenstates support nonthermal expectation values of local cluster operators in the bulk and exhibit signatures of topological order even at finite energy densities. Studying the dynamics for out-of-equilibrium states drawn from the noninteracting cluster basis, we unveil that nonthermalizing bulk dynamics can be observed on long time scales if clusters on odd and even sites are energetically detuned. In this case, cluster excitations remain essentially confined to one of the two sublattices such that inhomogeneous cluster configurations cannot equilibrate and thermalization of the full system is impeded. Our work sheds light on the role of quantum many-body scars in preserving SPT order at finite temperature and the possibility of coherent bulk dynamics in models with SPT order beyond the existence of long-lived edge modes.