No Arabic abstract
We use Nielsens geometric approach to quantify the circuit complexity in a one-dimensional Kitaev chain across a topological phase transition. We find that the circuit complexities of both the ground states and non-equilibrium steady states of the Kitaev model exhibit non-analytical behaviors at the critical points, and thus can be used to detect both {it equilibrium} and {it dynamical} topological phase transitions. Moreover, we show that the locality property of the real-space optimal Hamiltonian connecting two different ground states depends crucially on whether the two states belong to the same or different phases. This provides a concrete example of classifying different gapped phases using Nielsens circuit complexity. We further generalize our results to a Kitaev chain with long-range pairing, and discuss generalizations to higher dimensions. Our result opens up a new avenue for using circuit complexity as a novel tool to understand quantum many-body systems.
We study the chiral vortical conductivity in a holographic Weyl semimetal model, which describes a topological phase transition from the strongly coupled topologically nontrivial phase to a trivial phase. We focus on the temperature dependence of the chiral vortical conductivity where the mixed gauge-gravitational anomaly plays a crucial role. After a proper renormalization of the chiral vortical conductivity by the anomalous Hall conductivity and temperature squared, we find that at low temperature in both the Weyl semimetal phase and the quantum critical region this renormalized ratio stays as universal constants. More intriguingly, this ratio in the quantum critical region depends only on the emergent Lifshitz scaling exponent at the quantum critical point.
Notions of circuit complexity and cost play a key role in quantum computing and simulation where they capture the (weighted) minimal number of gates that is required to implement a unitary. Similar notions also become increasingly prominent in high energy physics in the study of holography. While notions of entanglement have in general little implications for the quantum circuit complexity and the cost of a unitary, in this note, we discuss a simple such relationship when both the entanglement of a state and the cost of a unitary take small values, building on ideas on how values of entangling power of quantum gates add up. This bound implies that if entanglement entropies grow linearly in time, so does the cost. The implications are two-fold: It provides insights into complexity growth for short times. In the context of quantum simulation, it allows to compare digital and analog quantum simulators. The main technical contribution is a continuous-variable small incremental entangling bound.
In quantum many-body systems with local interactions, the effects of boundary conditions are considered to be negligible, at least for sufficiently large systems. Here we show an example of the opposite. We consider a spin chain with two competing interactions, set on a ring with an odd number of sites. When only the dominant interaction is antiferromagnetic, and thus induces topological frustration, the standard antiferromagnetic order (expressed by the magnetization) is destroyed. When also the second interaction turns from ferro to antiferro, an antiferromagnetic order characterized by a site-dependent magnetization which varies in space with an incommensurate pattern, emerges. This modulation results from a ground state degeneracy, which allows to break the translational invariance. The transition between the two cases is signaled by a discontinuity in the first derivative of the ground state energy and represents a quantum phase transition induced by a special choice of boundary conditions.
Ginzburg-Landau theory of continuous phase transitions implicitly assumes that microscopic changes are negligible in determining the thermodynamic properties of the system. In this work we provide an example that clearly contrasts with this assumption. We show that topological frustration can change the nature of a second order quantum phase transition separating two different ordered phases. Even more remarkably, frustration is triggered simply by a suitable choice of boundary conditions in a 1D chain. While with every other BC each of two phases is characterized by its own local order parameter, with frustration no local order can survive. We construct string order parameters to distinguish the two phases, but, having proved that topological frustration is capable of altering the nature of a systems phase transition, our results pose a clear challenge to the current understanding of phase transitions in complex quantum systems.
Recent experiments have produced mounting evidence of Majorana zero modes in nanowire-superconductor hybrids. Signatures of an expected topological phase transition accompanying the onset of these modes nevertheless remain elusive. We investigate a fundamental question concerning this issue: Do well-formed Majorana modes necessarily entail a sharp phase transition in these setups? Assuming reasonable parameters, we argue that finite-size effects can dramatically smooth this putative transition into a crossover, even in systems large enough to support well-localized Majorana modes. We propose overcoming such finite-size effects by examining the behavior of low-lying excited states through tunneling spectroscopy. In particular, the excited-state energies exhibit characteristic field and density dependence, and scaling with system size, that expose an approaching topological phase transition. We suggest several experiments for extracting the predicted behavior. As a useful byproduct, the protocols also allow one to measure the wires spin-orbit coupling directly in its superconducting environment.