Do you want to publish a course? Click here

Robust Reinforcement Learning on State Observations with Learned Optimal Adversary

204   0   0.0 ( 0 )
 Added by Huan Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We study the robustness of reinforcement learning (RL) with adversarially perturbed state observations, which aligns with the setting of many adversarial attacks to deep reinforcement learning (DRL) and is also important for rolling out real-world RL agent under unpredictable sensing noise. With a fixed agent policy, we demonstrate that an optimal adversary to perturb state observations can be found, which is guaranteed to obtain the worst case agent reward. For DRL settings, this leads to a novel empirical adversarial attack to RL agents via a learned adversary that is much stronger than previous ones. To enhance the robustness of an agent, we propose a framework of alternating training with learned adversaries (ATLA), which trains an adversary online together with the agent using policy gradient following the optimal adversarial attack framework. Additionally, inspired by the analysis of state-adversarial Markov decision process (SA-MDP), we show that past states and actions (history) can be useful for learning a robust agent, and we empirically find a LSTM based policy can be more robust under adversaries. Empirical evaluations on a few continuous control environments show that ATLA achieves state-of-the-art performance under strong adversaries. Our code is available at https://github.com/huanzhang12/ATLA_robust_RL.



rate research

Read More

Intelligent agents rely heavily on prior experience when learning a new task, yet most modern reinforcement learning (RL) approaches learn every task from scratch. One approach for leveraging prior knowledge is to transfer skills learned on prior tasks to the new task. However, as the amount of prior experience increases, the number of transferable skills grows too, making it challenging to explore the full set of available skills during downstream learning. Yet, intuitively, not all skills should be explored with equal probability; for example information about the current state can hint which skills are promising to explore. In this work, we propose to implement this intuition by learning a prior over skills. We propose a deep latent variable model that jointly learns an embedding space of skills and the skill prior from offline agent experience. We then extend common maximum-entropy RL approaches to use skill priors to guide downstream learning. We validate our approach, SPiRL (Skill-Prior RL), on complex navigation and robotic manipulation tasks and show that learned skill priors are essential for effective skill transfer from rich datasets. Videos and code are available at https://clvrai.com/spirl.
Demonstration-guided reinforcement learning (RL) is a promising approach for learning complex behaviors by leveraging both reward feedback and a set of target task demonstrations. Prior approaches for demonstration-guided RL treat every new task as an independent learning problem and attempt to follow the provided demonstrations step-by-step, akin to a human trying to imitate a completely unseen behavior by following the demonstrators exact muscle movements. Naturally, such learning will be slow, but often new behaviors are not completely unseen: they share subtasks with behaviors we have previously learned. In this work, we aim to exploit this shared subtask structure to increase the efficiency of demonstration-guided RL. We first learn a set of reusable skills from large offline datasets of prior experience collected across many tasks. We then propose Skill-based Learning with Demonstrations (SkiLD), an algorithm for demonstration-guided RL that efficiently leverages the provided demonstrations by following the demonstrated skills instead of the primitive actions, resulting in substantial performance improvements over prior demonstration-guided RL approaches. We validate the effectiveness of our approach on long-horizon maze navigation and complex robot manipulation tasks.
We propose a new perspective on representation learning in reinforcement learning based on geometric properties of the space of value functions. We leverage this perspective to provide formal evidence regarding the usefulness of value functions as auxiliary tasks. Our formulation considers adapting the representation to minimize the (linear) approximation of the value function of all stationary policies for a given environment. We show that this optimization reduces to making accurate predictions regarding a special class of value functions which we call adversarial value functions (AVFs). We demonstrate that using value functions as auxiliary tasks corresponds to an expected-error relaxation of our formulation, with AVFs a natural candidate, and identify a close relationship with proto-value functions (Mahadevan, 2005). We highlight characteristics of AVFs and their usefulness as auxiliary tasks in a series of experiments on the four-room domain.
We provide a framework for incorporating robustness -- to perturbations in the transition dynamics which we refer to as model misspecification -- into continuous control Reinforcement Learning (RL) algorithms. We specifically focus on incorporating robustness into a state-of-the-art continuous control RL algorithm called Maximum a-posteriori Policy Optimization (MPO). We achieve this by learning a policy that optimizes for a worst case expected return objective and derive a corresponding robust entropy-regularized Bellman contraction operator. In addition, we introduce a less conservative, soft-robust, entropy-regularized objective with a corresponding Bellman operator. We show that both, robust and soft-robust policies, outperform their non-robust counterparts in nine Mujoco domains with environment perturbations. In addition, we show improved robust performance on a high-dimensional, simulated, dexterous robotic hand. Finally, we present multiple investigative experiments that provide a deeper insight into the robustness framework. This includes an adaptation to another continuous control RL algorithm as well as learning the uncertainty set from offline data. Performance videos can be found online at https://sites.google.com/view/robust-rl.
In this paper, we propose a novel meta-learning method in a reinforcement learning setting, based on evolution strategies (ES), exploration in parameter space and deterministic policy gradients. ES methods are easy to parallelize, which is desirable for modern training architectures; however, such methods typically require a huge number of samples for effective training. We use deterministic policy gradients during adaptation and other techniques to compensate for the sample-efficiency problem while maintaining the inherent scalability of ES methods. We demonstrate that our method achieves good results compared to gradient-based meta-learning in high-dimensional control tasks in the MuJoCo simulator. In addition, because of gradient-free methods in the meta-training phase, which do not need information about gradients and policies in adaptation training, we predict and confirm our algorithm performs better in tasks that need multi-step adaptation.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا