Do you want to publish a course? Click here

Accelerating Reinforcement Learning with Learned Skill Priors

84   0   0.0 ( 0 )
 Added by Karl Pertsch
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Intelligent agents rely heavily on prior experience when learning a new task, yet most modern reinforcement learning (RL) approaches learn every task from scratch. One approach for leveraging prior knowledge is to transfer skills learned on prior tasks to the new task. However, as the amount of prior experience increases, the number of transferable skills grows too, making it challenging to explore the full set of available skills during downstream learning. Yet, intuitively, not all skills should be explored with equal probability; for example information about the current state can hint which skills are promising to explore. In this work, we propose to implement this intuition by learning a prior over skills. We propose a deep latent variable model that jointly learns an embedding space of skills and the skill prior from offline agent experience. We then extend common maximum-entropy RL approaches to use skill priors to guide downstream learning. We validate our approach, SPiRL (Skill-Prior RL), on complex navigation and robotic manipulation tasks and show that learned skill priors are essential for effective skill transfer from rich datasets. Videos and code are available at https://clvrai.com/spirl.

rate research

Read More

Demonstration-guided reinforcement learning (RL) is a promising approach for learning complex behaviors by leveraging both reward feedback and a set of target task demonstrations. Prior approaches for demonstration-guided RL treat every new task as an independent learning problem and attempt to follow the provided demonstrations step-by-step, akin to a human trying to imitate a completely unseen behavior by following the demonstrators exact muscle movements. Naturally, such learning will be slow, but often new behaviors are not completely unseen: they share subtasks with behaviors we have previously learned. In this work, we aim to exploit this shared subtask structure to increase the efficiency of demonstration-guided RL. We first learn a set of reusable skills from large offline datasets of prior experience collected across many tasks. We then propose Skill-based Learning with Demonstrations (SkiLD), an algorithm for demonstration-guided RL that efficiently leverages the provided demonstrations by following the demonstrated skills instead of the primitive actions, resulting in substantial performance improvements over prior demonstration-guided RL approaches. We validate the effectiveness of our approach on long-horizon maze navigation and complex robot manipulation tasks.
Safety remains a central obstacle preventing widespread use of RL in the real world: learning new tasks in uncertain environments requires extensive exploration, but safety requires limiting exploration. We propose Recovery RL, an algorithm which navigates this tradeoff by (1) leveraging offline data to learn about constraint violating zones before policy learning and (2) separating the goals of improving task performance and constraint satisfaction across two policies: a task policy that only optimizes the task reward and a recovery policy that guides the agent to safety when constraint violation is likely. We evaluate Recovery RL on 6 simulation domains, including two contact-rich manipulation tasks and an image-based navigation task, and an image-based obstacle avoidance task on a physical robot. We compare Recovery RL to 5 prior safe RL methods which jointly optimize for task performance and safety via constrained optimization or reward shaping and find that Recovery RL outperforms the next best prior method across all domains. Results suggest that Recovery RL trades off constraint violations and task successes 2 - 20 times more efficiently in simulation domains and 3 times more efficiently in physical experiments. See https://tinyurl.com/rl-recovery for videos and supplementary material.
Having the ability to acquire inherent skills from environments without any external rewards or supervision like humans is an important problem. We propose a novel unsupervised skill discovery method named Information Bottleneck Option Learning (IBOL). On top of the linearization of environments that promotes more various and distant state transitions, IBOL enables the discovery of diverse skills. It provides the abstraction of the skills learned with the information bottleneck framework for the options with improved stability and encouraged disentanglement. We empirically demonstrate that IBOL outperforms multiple state-of-the-art unsupervised skill discovery methods on the information-theoretic evaluations and downstream tasks in MuJoCo environments, including Ant, HalfCheetah, Hopper and DKitty.
The ability of robots to grasp novel objects has industry applications in e-commerce order fulfillment and home service. Data-driven grasping policies have achieved success in learning general strategies for grasping arbitrary objects. However, these approaches can fail to grasp objects which have complex geometry or are significantly outside of the training distribution. We present a Thompson sampling algorithm that learns to grasp a given object with unknown geometry using online experience. The algorithm leverages learned priors from the Dexterity Network robot grasp planner to guide grasp exploration and provide probabilistic estimates of grasp success for each stable pose of the novel object. We find that seeding the policy with the Dex-Net prior allows it to more efficiently find robust grasps on these objects. Experiments suggest that the best learned policy attains an average total reward 64.5% higher than a greedy baseline and achieves within 5.7% of an oracle baseline when evaluated over 300,000 training runs across a set of 3000 object poses.
Typically, loss functions, regularization mechanisms and other important aspects of training parametric models are chosen heuristically from a limited set of options. In this paper, we take the first step towards automating this process, with the view of producing models which train faster and more robustly. Concretely, we present a meta-learning method for learning parametric loss functions that can generalize across different tasks and model architectures. We develop a pipeline for meta-training such loss functions, targeted at maximizing the performance of the model trained under them. The loss landscape produced by our learned losses significantly improves upon the original task-specific losses in both supervised and reinforcement learning tasks. Furthermore, we show that our meta-learning framework is flexible enough to incorporate additional information at meta-train time. This information shapes the learned loss function such that the environment does not need to provide this information during meta-test time. We make our code available at https://sites.google.com/view/mlthree.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا