No Arabic abstract
Landau suggested that the low-temperature properties of metals can be understood in terms of long-lived quasiparticles with all complex interactions included in Fermi-liquid parameters, such as the effective mass $m^{star}$. Despite its wide applicability, electronic transport in bad or strange metals and unconventional superconductors is controversially discussed towards a possible collapse of the quasiparticle concept. Here we explore the electrodynamic response of correlated metals at half filling for varying correlation strength upon approaching a Mott insulator. We reveal persistent Fermi-liquid behavior with pronounced quadratic dependences of the optical scattering rate on temperature and frequency, along with a puzzling elastic contribution to relaxation. The strong increase of the resistivity beyond the Ioffe-Regel-Mott limit is accompanied by a `displaced Drude peak in the optical conductivity. Our results, supported by a theoretical model for the optical response, demonstrate the emergence of a bad metal from resilient quasiparticles that are subject to dynamical localization and dissolve near the Mott transition.
Recently it was shown that the multipolar Kondo problem, wherein a quantum impurity carrying higher-rank multipolar moments interacts with conduction electrons, leads to novel non-Fermi liquid states. Because of the multipolar character of the local moments, the form of the interaction with conduction electrons is strongly dependent on the orbital-symmetry of the conduction electrons via crystalline symmetry constraints. This suggests that there may exist a variety of different non-Fermi liquid states in generic multipolar Kondo problems depending on the character of conduction electrons. In this work, using renormalization group analysis, we investigate a model where the multipolar local moment is coupled to conduction electrons with two different orbital-symmetry components, namely $p$-wave and $f$-wave symmetries. When each orbital-symmetry component is present alone, non-Fermi liquid states with exactly the same thermodynamic singularities appear. When both orbital-symmetry components are allowed, however, a completely different non-Fermi liquid state arises via the quantum fluctuations in the mixed scattering channels. This remarkable result suggests that the multipolar Kondo problem presents novel opportunities for the discovery of unexpected non-Fermi liquid states.
How a Mott insulator develops into a weakly coupled metal upon doping is a central question to understanding various emergent correlated phenomena. To analyze this evolution and its connection to the high-$T_c$ cuprates, we study the single-particle spectrum for the doped Hubbard model using cluster perturbation theory on superclusters. Starting from extremely low doping, we identify a heavily renormalized quasiparticle dispersion that immediately develops across the Fermi level, and a weakening polaronic side band at higher binding energy. The quasiparticle spectral weight roughly grows at twice the rate of doping in the low doping regime, but this rate is halved at optimal doping. In the heavily doped regime, we find both strong electron-hole asymmetry and a persistent presence of Mott spectral features. Finally, we discuss the applicability of the single-band Hubbard model to describe the evolution of nodal spectra measured by angle-resolved photoemission spectroscopy (ARPES) on the single-layer cuprate La$_{2-x}$Sr$_x$CuO$_4$ ($0 le x le 0.15$). This work benchmarks the predictive power of the Hubbard model for electronic properties of high-$T_c$ cuprates.
The low-temperature states of bosonic fluids exhibit fundamental quantum effects at the macroscopic scale: the best-known examples are Bose-Einstein condensation (BEC) and superfluidity, which have been tested experimentally in a variety of different systems. When bosons are interacting, disorder can destroy condensation leading to a so-called Bose glass. This phase has been very elusive to experiments due to the absence of any broken symmetry and of a finite energy gap in the spectrum. Here we report the observation of a Bose glass of field-induced magnetic quasiparticles in a doped quantum magnet (Br-doped dichloro-tetrakis-thiourea-Nickel, DTN). The physics of DTN in a magnetic field is equivalent to that of a lattice gas of bosons in the grand-canonical ensemble; Br-doping introduces disorder in the hoppings and interaction strengths, leading to localization of the bosons into a Bose glass down to zero field, where it acquires the nature of an incompressible Mott glass. The transition from the Bose glass (corresponding to a gapless spin liquid) to the BEC (corresponding to a magnetically ordered phase) is marked by a novel, universal exponent governing the scaling on the critical temperature with the applied field, in excellent agreement with theoretical predictions. Our study represents the first, quantitative account of the universal features of disordered bosons in the grand-canonical ensemble.
Pressure dependence of the conductivity and thermoelectric power is measured through the Mott transition in the layer organic conductor EtMe3P[Pd(dmit)2]2. The critical behavior of the thermoelectric effect provides a clear and objective determination of the Mott-Hubbard transition during the isothermal pressure sweep. Above the critical end point, the metal-insulator crossing, determined by the thermoelectric effect minimum value, is not found to coincide with the maximum of the derivative of the conductivity as a function of pressure. We show that the critical exponents of the Mott-Hubbard transition fall within the Ising universality class regardless of the dimensionality of the system.
Strong correlation effects, such as a dramatic increase in the effective mass of the carriers of electricity, recently observed in the low density electron gas have provided spectacular support for the existence of a sharp metal-insulator transitions in dilute two dimensional electron gases. Here we show that strong correlations, normally expected only for narrow integer filled bands, can be effectively enhanced even far away from integer filling, due to incipient charge ordering driven by non-local Coulomb interactions. This general mechanism is illustrated by solving an extended Hubbard model using dynamical mean-field theory. Our findings account for the key aspects of the experimental phase diagram, and reconcile the early view points of Wigner and Mott. The interplay of short range charge order and local correlations should result in a three peak structure in the spectral function of the electrons which should be observable in tunneling and optical spectroscopy.