Do you want to publish a course? Click here

Discrete Double Fibrations

54   0   0.0 ( 0 )
 Added by Michael Lambert
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Presheaves on a small category are well-known to correspond via a category of elements construction to ordinary discrete fibrations over that same small category. Work of R. Pare proposes that presheaves on a small double category are certain lax functors valued in the double category of sets with spans. This paper isolates the discrete fibration concept corresponding to this presheaf notion and shows that the category of elements construction introduced by Pare leads to an equivalence of virtual double categories.



rate research

Read More

69 - Nima Rasekh 2021
Cartesian fibrations were originally defined by Lurie in the context of quasi-categories and are commonly used in $(infty,1)$-category theory to study presheaves valued in $(infty,1)$-categories. In this work we define and study fibrations modeling presheaves valued in simplicial spaces and their localizations. This includes defining a model structure for these fibrations and giving effective tools to recognize its fibrations and weak equivalences. This in particular gives us a new method to construct Cartesian fibrations via complete Segal spaces. In addition to that, it allows us to define and study fibrations modeling presheaves of Segal spaces.
A coherent presentation of an n-category is a presentation by generators, relations and relations among relations. Completions of presentations by rewriting systems give coherent presentations, whose relations among relations are generated by confluence diagrams induced by critical branchings. This article extends this construction to presentations by polygraphs defined modulo a set of relations. Our coherence results are formulated using the structure of n-category enriched in double groupoids, whose horizontal cells represent rewriting sequences, vertical cells represent the congruence generated by relations modulo and square cells represent coherence cells induced by confluence modulo. We illustrate these constructions for rewriting modulo commutation relations in monoids and isotopy relations in pivotal monoidal categories.
We show that the M-canonical map of an n-dimensional complex projective manifold X of Kodaira dimension two is birational to an Iitaka fibration for a computable positive integer M. M depends on the index b of a general fibre F of the Iitaka fibration and on the Betti number of the canonical covering of F, In particular, M is a universal constant if the dimension n is smaller than or equal to 4.
148 - Michael Harrison 2014
A fibration of ${mathbb R}^n$ by oriented copies of ${mathbb R}^p$ is called skew if no two fibers intersect nor contain parallel directions. Conditions on $p$ and $n$ for the existence of such a fibration were given by Ovsienko and Tabachnikov. A classification of smooth fibrations of ${mathbb R}^3$ by skew oriented lines was given by Salvai, in analogue with the classification of oriented great circle fibrations of $S^3$ by Gluck and Warner. We show that Salvais classification has a topological variation which generalizes to characterize all continuous fibrations of ${mathbb R}^n$ by skew oriented copies of ${mathbb R}^p$. We show that the space of fibrations of ${mathbb R}^3$ by skew oriented lines deformation retracts to the subspace of Hopf fibrations, and therefore has the homotopy type of a pair of disjoint copies of $S^2$. We discuss skew fibrations in the complex and quaternionic setting and give a necessary condition for the existence of a fibration of ${mathbb C}^n$ (${mathbb H}^n$) by skew oriented copies of ${mathbb C}^p$ (${mathbb H}^p$).
Let $M$ be a hyperkahler manifold of maximal holonomy (that is, an IHS manifold), and let $K$ be its Kahler cone, which is an open, convex subset in the space $H^{1,1}(M, R)$ of real (1,1)-forms. This space is equipped with a canonical bilinear symmetric form of signature $(1,n)$ obtained as a restriction of the Bogomolov-Beauville-Fujiki form. The set of vectors of positive square in the space of signature $(1,n)$ is a disconnected union of two convex cones. The positive cone is the component which contains the Kahler cone. We say that the Kahler cone is round if it is equal to the positive cone. The manifolds with round Kahler cones have unique bimeromorphic model and correspond to Hausdorff points in the corresponding Teichmuller space. We prove thay any maximal holonomy hyperkahler manifold with $b_2 > 4$ has a deformation with round Kahler cone and the Picard lattice of signature (1,1), admitting two non-collinear integer isotropic classes. This is used to show that all known examples of hyperkahler manifolds admit a deformation with two transversal Lagrangian fibrations, and the Kobayashi metric vanishes unless the Picard rank is maximal.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا