No Arabic abstract
Cartesian fibrations were originally defined by Lurie in the context of quasi-categories and are commonly used in $(infty,1)$-category theory to study presheaves valued in $(infty,1)$-categories. In this work we define and study fibrations modeling presheaves valued in simplicial spaces and their localizations. This includes defining a model structure for these fibrations and giving effective tools to recognize its fibrations and weak equivalences. This in particular gives us a new method to construct Cartesian fibrations via complete Segal spaces. In addition to that, it allows us to define and study fibrations modeling presheaves of Segal spaces.
We prove that four different ways of defining Cartesian fibrations and the Cartesian model structure are all Quillen equivalent: On marked simplicial sets, on bisimplicial spaces, on bisimplicial sets, on marked simplicial spaces. The main way to prove these equivalences is by using the Quillen equivalences between quasi-categories and complete Segal spaces as defined by Joyal-Tierney and the straightening construction due to Lurie.
We prove that every 2-Segal space is unital.
Many special classes of simplicial sets, such as the nerves of categories or groupoids, the 2-Segal sets of Dyckerhoff and Kapranov, and the (discrete) decomposition spaces of G{a}lvez, Kock, and Tonks, are characterized by the property of sending certain commuting squares in the simplex category $Delta$ to pullback squares of sets. We introduce weaker analogues of these properties called completeness conditions, which require squares in $Delta$ to be sent to weak pullbacks of sets, defined similarly to pullback squares but without the uniqueness property of induced maps. We show that some of these completeness conditions provide a simplicial set with lifts against certain subsets of simplices first introduced in the theory of database design. We also provide reduced criteria for checking these properties using factorization results for pushouts squares in $Delta$, which we characterize completely, along with several other classes of squares in $Delta$. Examples of simplicial sets with completeness conditions include quasicategories, Kan complexes, many of the compositories and gleaves of Flori and Fritz, and bar constructions for algebras of certain classes of monads. The latter is our motivating example which we discuss in a companion paper.
It is well known since Stasheffs work that 1-fold loop spaces can be described in terms of the existence of higher homotopies for associativity (coherence conditions) or equivalently as algebras of contractible non-symmetric operads. The combinatorics of these higher homotopies is well understood and is extremely useful. For $n ge 2$ the theory of symmetric operads encapsulated the corresponding higher homotopies, yet hid the combinatorics and it has remain a mystery for almost 40 years. However, the recent developments in many fields ranging from algebraic topology and algebraic geometry to mathematical physics and category theory show that this combinatorics in higher dimensions will be even more important than the one dimensional case. In this paper we are going to show that there exists a conceptual way to make these combinatorics explicit using the so called higher nonsymmetric $n$-operads.
This paper proves three different coherence theorems for symmetric monoidal bicategories. First, we show that in a free symmetric monoidal bicategory every diagram of 2-cells commutes. Second, we show that this implies that the free symmetric monoidal bicategory on one object is equivalent, as a symmetric monoidal bicategory, to the discrete symmetric monoidal bicategory given by the disjoint union of the symmetric groups. Third, we show that every symmetric monoidal bicategory is equivalent to a strict one. We give two topological applications of these coherence results. First, we show that the classifying space of a symmetric monoidal bicategory can be equipped with an E_{infty} structure. Second, we show that the fundamental 2-groupoid of an E_n space, n geq 4, has a symmetric monoidal structure. These calculations also show that the fundamental 2-groupoid of an E_3 space has a sylleptic monoidal structure.