Do you want to publish a course? Click here

Direct evidence for magnetic reconnection at the boundaries of magnetic switchbacks with Parker Solar Probe

135   0   0.0 ( 0 )
 Added by Clara Froment
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Parker Solar Probes first encounters with the Sun revealed the presence of ubiquitous localised magnetic deflections in the inner heliosphere; these structures, often called switchbacks, are particularly striking in solar wind streams originating from coronal holes. We report the direct evidence for magnetic reconnection occuring at the boundaries of three switchbacks crossed by Parker Solar Probe (PSP) at a distance of 45 to 48 solar radii of the Sun during its first encounter. We analyse the magnetic field and plasma parameters from the FIELDS and SWEAP instruments. The three structures analysed all show typical signatures of magnetic reconnection. The ion velocity and magnetic field are first correlated and then anti-correlated at the inbound and outbound edges of the bifurcated current sheets with a central ion flow jet. Most of the reconnection events have a strong guide field and moderate magnetic shear but one current sheet shows indications of quasi anti-parallel reconnection in conjunction with a magnetic field magnitude decrease by $90%$. Given the wealth of intense current sheets observed by PSP, reconnection at switchbacks boundaries appears to be rare. However, as the switchback boundaries accomodate currents one can conjecture that the geometry of these boundaries offers favourable conditions for magnetic reconnection to occur. Such a mechanism would thus contribute in reconfiguring the magnetic field of the switchbacks, affecting the dynamics of the solar wind and eventually contributing to the blending of the structures with the regular wind as they propagate away from the Sun.



rate research

Read More

Parker Solar Probe (PSP) routinely observes magnetic field deflections in the solar wind at distances less than 0.3 au from the Sun. These deflections are related to structures commonly called switchbacks (SBs), whose origins and characteristic properties are currently debated. Here, we use a database of visually selected SB intervals - and regions of solar wind plasma measured just before and after each SB - to examine plasma parameters, turbulent spectra from inertial to dissipation scales, and intermittency effects in these intervals. We find that many features, such as perpendicular stochastic heating rates and turbulence spectral slopes are fairly similar inside and outside of SBs. However, important kinetic properties, such as the characteristic break scale between the inertial to dissipation ranges differ inside and outside these intervals, as does the level of intermittency, which is notably enhanced inside SBs and in their close proximity, most likely due to magnetic field and velocity shears observed at the edges. We conclude that the plasma inside and outside of a SB, in most of the observed cases, belongs to the same stream, and that the evolution of these structures is most likely regulated by kinetic processes, which dominate small scale structures at the SB edges.
Many solar coronal jets result from erupting miniature-filament (minifilament) magnetic flux ropes that reconnect with encountered surrounding far-reaching field. Many of those minifilament flux ropes are apparently built and triggered to erupt by magnetic flux cancelation. If that cancelation (or some other process) results in the flux ropes field having twist, then the reconnection with the far-reaching field transfers much of that twist to that reconnected far-reaching field. In cases where that surrounding field is open, the twist can propagate to far distances from the Sun as a magnetic-twist Alfvenic pulse. We argue that such pulses from jets could be the kinked-magnetic-field structures known as switchbacks, detected in the solar wind during perihelion passages of the Parker Solar Probe (PSP). For typical coronal-jet-generated Alfvenic pulses, we expect that the switchbacks would flow past PSP with a duration of several tens of minutes; larger coronal jets might produce switchbacks with passage durations ~1hr. Smaller-scale jet-like features on the Sun known as jetlets may be small-sca
Stealth coronal mass ejection (CMEs) are eruptions from the Sun that are not associated with appreciable low-coronal signatures. Because they often cannot be linked to a well-defined source region on the Sun, analysis of their initial magnetic configuration and eruption dynamics is particularly problematic. In this manuscript, we address this issue by undertaking the first attempt at predicting the magnetic fields of a stealth CME that erupted in 2020 June from the Earth-facing Sun. We estimate its source region with the aid of off-limb observations from a secondary viewpoint and photospheric magnetic field extrapolations. We then employ the Open Solar Physics Rapid Ensemble Information (OSPREI) modelling suite to evaluate its early evolution and forward-model its magnetic fields up to Parker Solar Probe, which detected the CME in situ at a heliocentric distance of 0.5 AU. We compare our hindcast prediction with in-situ measurements and a set of flux rope reconstructions, obtaining encouraging agreement on arrival time, spacecraft crossing location, and magnetic field profiles. This work represents a first step towards reliable understanding and forecasting of the magnetic configuration of stealth CMEs and slow, streamer-blowout events.
Observations by the Parker Solar Probe mission of the solar wind at about 35.7 solar radii reveal the existence of whistler wave packets with frequencies below 0.1 f/fce (20-80 Hz in the spacecraft frame). These waves often coincide with local minima of the magnetic field magnitude or with sudden deflections of the magnetic field that are called switchbacks. Their sunward propagation leads to a significant Doppler frequency downshift from 200-300 Hz to 20-80 Hz (from 0.2 f/fce to 0.5 f/fce). The polarization of these waves varies from quasi-parallel to significantly oblique with wave normal angles that are close to the resonance cone. Their peak amplitude can be as large as 2 to 4 nT. Such values represent approximately 10% of the background magnetic field, which is considerably more than what is observed at 1 a.u. Recent numerical studies show that such waves may potentially play a key role in breaking the heat flux and scattering the Strahl population of suprathermal electrons into a halo population.
88 - L.-L. Zhao , G. P. Zank , Q. Hu 2020
We systematically search for magnetic flux rope structures in the solar wind to within the closest distance to the Sun of 0.13 AU, using data from the third and fourth orbits of the Parker Solar Probe. We extend our previous magnetic helicity based technique of identifying magnetic flux rope structures. The method is improved upon to incorporate the azimuthal flow, which becomes larger as the spacecraft approaches the Sun. A total of 21 and 34 magnetic flux ropes are identified during the third (21 days period) and fourth (17 days period) orbits of the Parker Solar Probe, respectively. We provide a statistical analysis of the identified structures, including their relation to the streamer belt and heliospheric current sheet crossing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا