Do you want to publish a course? Click here

Detection of small magnetic flux ropes from the third and fourth Parker Solar Probe encounters

89   0   0.0 ( 0 )
 Added by Lingling Zhao
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We systematically search for magnetic flux rope structures in the solar wind to within the closest distance to the Sun of 0.13 AU, using data from the third and fourth orbits of the Parker Solar Probe. We extend our previous magnetic helicity based technique of identifying magnetic flux rope structures. The method is improved upon to incorporate the azimuthal flow, which becomes larger as the spacecraft approaches the Sun. A total of 21 and 34 magnetic flux ropes are identified during the third (21 days period) and fourth (17 days period) orbits of the Parker Solar Probe, respectively. We provide a statistical analysis of the identified structures, including their relation to the streamer belt and heliospheric current sheet crossing.



rate research

Read More

102 - Yu Chen , Qiang Hu , Lingling Zhao 2020
Small-scale magnetic flux ropes (SFRs) are a type of structures in the solar wind that possess helical magnetic field lines. In a recent report (Chen & Hu 2020), we presented the radial variations of the properties of SFR from 0.29 to 8 au using in situ measurements from the Helios, ACE/Wind, Ulysses, and Voyager spacecraft. With the launch of the Parker Solar Probe (PSP), we extend our previous investigation further into the inner heliosphere. We apply a Grad-Shafranov-based algorithm to identify SFRs during the first two PSP encounters. We find that the number of SFRs detected near the Sun is much less than that at larger radial distances, where magnetohydrodynamic (MHD) turbulence may act as the local source to produce these structures. The prevalence of Alfvenic structures significantly suppresses the detection of SFRs at closer distances. We compare the SFR event list with other event identification methods, yielding a dozen well-matched events. The cross-section maps of two selected events confirm the cylindrical magnetic flux rope configuration. The power-law relation between the SFR magnetic field and heliocentric distances seems to hold down to 0.16 au.
We investigate the solar wind energy flux in the inner heliosphere using 12-day observations around each perihelion of Encounter One (E01), Two (E02), Four (E04), and Five (E05) of Parker Solar Probe (PSP), respectively, with a minimum heliocentric distance of 27.8 solar radii ($R_odot{}$). Energy flux was calculated based on electron parameters (density $n_e$, core electron temperature $T_{c}$, and suprathermal electron temperature $T_{h}$) obtained from the simplified analysis of the plasma quasi-thermal noise (QTN) spectrum measured by RFS/FIELDS and the bulk proton parameters (bulk speed $V_p$ and temperature $T_p$) measured by the Faraday Cup onboard PSP, SPC/SWEAP. Combining observations from E01, E02, E04, and E05, the averaged energy flux value normalized to 1 $R_odot{}$ plus the energy necessary to overcome the solar gravitation ($W_{R_odot{}}$) is about 70$pm$14 $W m^{-2}$, which is similar to the average value (79$pm$18 $W m^{-2}$) derived by Le Chat et al from 24-year observations by Helios, Ulysses, and Wind at various distances and heliolatitudes. It is remarkable that the distributions of $W_{R_odot{}}$ are nearly symmetrical and well fitted by Gaussians, much more so than at 1 AU, which may imply that the small heliocentric distance limits the interactions with transient plasma structures.
The Solar Wind Electrons Alphas and Protons experiment on the Parker Solar Probe (PSP) mission measures the three-dimensional electron velocity distribution function. We derive the parameters of the core, halo, and strahl populations utilizing a combination of fitting to model distributions and numerical integration for $sim 100,000$ electron distributions measured near the Sun on the first two PSP orbits, which reached heliocentric distances as small as $sim 0.17$ AU. As expected, the electron core density and temperature increase with decreasing heliocentric distance, while the ratio of electron thermal pressure to magnetic pressure ($beta_e$) decreases. These quantities have radial scaling consistent with previous observations farther from the Sun, with superposed variations associated with different solar wind streams. The density in the strahl also increases; however, the density of the halo plateaus and even decreases at perihelion, leading to a large strahl/halo ratio near the Sun. As at greater heliocentric distances, the core has a sunward drift relative to the proton frame, which balances the current carried by the strahl, satisfying the zero-current condition necessary to maintain quasi-neutrality. Many characteristics of the electron distributions near perihelion have trends with solar wind flow speed, $beta_e$, and/or collisional age. Near the Sun, some trends not clearly seen at 1 AU become apparent, including anti-correlations between wind speed and both electron temperature and heat flux. These trends help us understand the mechanisms that shape the solar wind electron distributions at an early stage of their evolution.
As fundamental parameters of the Sun, the Alfven radius and angular momentum loss determine how the solar wind changes from sub-Alfvenic to super-Alfvenic and how the Sun spins down. We present an approach to determining the solar wind angular momentum flux based on observations from Parker Solar Probe (PSP). A flux of about $0.15times10^{30}$ dyn cm sr$^{-1}$ near the ecliptic plane and 0.7:1 partition of that flux between the particles and magnetic field are obtained by averaging data from the first four encounters within 0.3 au from the Sun. The angular momentum flux and its particle component decrease with the solar wind speed, while the flux in the field is remarkably constant. A speed dependence in the Alfven radius is also observed, which suggests a rugged Alfven surface around the Sun. Substantial diving below the Alfven surface seems plausible only for relatively slow solar wind given the orbital design of PSP. Uncertainties are evaluated based on the acceleration profiles of the same solar wind streams observed at PSP and a radially aligned spacecraft near 1 au. We illustrate that the angular momentum paradox raised by Reville et al. can be removed by taking into account the contribution of the alpha particles. The large proton transverse velocity observed by PSP is perhaps inherent in the solar wind acceleration process, where an opposite transverse velocity is produced for the alphas with the angular momentum conserved. Preliminary analysis of some recovered alpha parameters tends to agree with the results.
Parker Solar Probes first encounters with the Sun revealed the presence of ubiquitous localised magnetic deflections in the inner heliosphere; these structures, often called switchbacks, are particularly striking in solar wind streams originating from coronal holes. We report the direct evidence for magnetic reconnection occuring at the boundaries of three switchbacks crossed by Parker Solar Probe (PSP) at a distance of 45 to 48 solar radii of the Sun during its first encounter. We analyse the magnetic field and plasma parameters from the FIELDS and SWEAP instruments. The three structures analysed all show typical signatures of magnetic reconnection. The ion velocity and magnetic field are first correlated and then anti-correlated at the inbound and outbound edges of the bifurcated current sheets with a central ion flow jet. Most of the reconnection events have a strong guide field and moderate magnetic shear but one current sheet shows indications of quasi anti-parallel reconnection in conjunction with a magnetic field magnitude decrease by $90%$. Given the wealth of intense current sheets observed by PSP, reconnection at switchbacks boundaries appears to be rare. However, as the switchback boundaries accomodate currents one can conjecture that the geometry of these boundaries offers favourable conditions for magnetic reconnection to occur. Such a mechanism would thus contribute in reconfiguring the magnetic field of the switchbacks, affecting the dynamics of the solar wind and eventually contributing to the blending of the structures with the regular wind as they propagate away from the Sun.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا