No Arabic abstract
Observations by the Parker Solar Probe mission of the solar wind at about 35.7 solar radii reveal the existence of whistler wave packets with frequencies below 0.1 f/fce (20-80 Hz in the spacecraft frame). These waves often coincide with local minima of the magnetic field magnitude or with sudden deflections of the magnetic field that are called switchbacks. Their sunward propagation leads to a significant Doppler frequency downshift from 200-300 Hz to 20-80 Hz (from 0.2 f/fce to 0.5 f/fce). The polarization of these waves varies from quasi-parallel to significantly oblique with wave normal angles that are close to the resonance cone. Their peak amplitude can be as large as 2 to 4 nT. Such values represent approximately 10% of the background magnetic field, which is considerably more than what is observed at 1 a.u. Recent numerical studies show that such waves may potentially play a key role in breaking the heat flux and scattering the Strahl population of suprathermal electrons into a halo population.
We investigate the solar wind energy flux in the inner heliosphere using 12-day observations around each perihelion of Encounter One (E01), Two (E02), Four (E04), and Five (E05) of Parker Solar Probe (PSP), respectively, with a minimum heliocentric distance of 27.8 solar radii ($R_odot{}$). Energy flux was calculated based on electron parameters (density $n_e$, core electron temperature $T_{c}$, and suprathermal electron temperature $T_{h}$) obtained from the simplified analysis of the plasma quasi-thermal noise (QTN) spectrum measured by RFS/FIELDS and the bulk proton parameters (bulk speed $V_p$ and temperature $T_p$) measured by the Faraday Cup onboard PSP, SPC/SWEAP. Combining observations from E01, E02, E04, and E05, the averaged energy flux value normalized to 1 $R_odot{}$ plus the energy necessary to overcome the solar gravitation ($W_{R_odot{}}$) is about 70$pm$14 $W m^{-2}$, which is similar to the average value (79$pm$18 $W m^{-2}$) derived by Le Chat et al from 24-year observations by Helios, Ulysses, and Wind at various distances and heliolatitudes. It is remarkable that the distributions of $W_{R_odot{}}$ are nearly symmetrical and well fitted by Gaussians, much more so than at 1 AU, which may imply that the small heliocentric distance limits the interactions with transient plasma structures.
As fundamental parameters of the Sun, the Alfven radius and angular momentum loss determine how the solar wind changes from sub-Alfvenic to super-Alfvenic and how the Sun spins down. We present an approach to determining the solar wind angular momentum flux based on observations from Parker Solar Probe (PSP). A flux of about $0.15times10^{30}$ dyn cm sr$^{-1}$ near the ecliptic plane and 0.7:1 partition of that flux between the particles and magnetic field are obtained by averaging data from the first four encounters within 0.3 au from the Sun. The angular momentum flux and its particle component decrease with the solar wind speed, while the flux in the field is remarkably constant. A speed dependence in the Alfven radius is also observed, which suggests a rugged Alfven surface around the Sun. Substantial diving below the Alfven surface seems plausible only for relatively slow solar wind given the orbital design of PSP. Uncertainties are evaluated based on the acceleration profiles of the same solar wind streams observed at PSP and a radially aligned spacecraft near 1 au. We illustrate that the angular momentum paradox raised by Reville et al. can be removed by taking into account the contribution of the alpha particles. The large proton transverse velocity observed by PSP is perhaps inherent in the solar wind acceleration process, where an opposite transverse velocity is produced for the alphas with the angular momentum conserved. Preliminary analysis of some recovered alpha parameters tends to agree with the results.
The Solar Wind Electrons Alphas and Protons experiment on the Parker Solar Probe (PSP) mission measures the three-dimensional electron velocity distribution function. We derive the parameters of the core, halo, and strahl populations utilizing a combination of fitting to model distributions and numerical integration for $sim 100,000$ electron distributions measured near the Sun on the first two PSP orbits, which reached heliocentric distances as small as $sim 0.17$ AU. As expected, the electron core density and temperature increase with decreasing heliocentric distance, while the ratio of electron thermal pressure to magnetic pressure ($beta_e$) decreases. These quantities have radial scaling consistent with previous observations farther from the Sun, with superposed variations associated with different solar wind streams. The density in the strahl also increases; however, the density of the halo plateaus and even decreases at perihelion, leading to a large strahl/halo ratio near the Sun. As at greater heliocentric distances, the core has a sunward drift relative to the proton frame, which balances the current carried by the strahl, satisfying the zero-current condition necessary to maintain quasi-neutrality. Many characteristics of the electron distributions near perihelion have trends with solar wind flow speed, $beta_e$, and/or collisional age. Near the Sun, some trends not clearly seen at 1 AU become apparent, including anti-correlations between wind speed and both electron temperature and heat flux. These trends help us understand the mechanisms that shape the solar wind electron distributions at an early stage of their evolution.
One of the discoveries made by Parker Solar Probe during first encounters with the Sun is the ubiquitous presence of relatively small-scale structures standing out as sudden deflections of the magnetic field. They were called switchbacks as some of them show up the full reversal of the radial component of the magnetic field and then return to regular conditions. Analyzing the magnetic field and plasma perturbations associated with switchbacks we identify three types of structures with slightly different characteristics: 1. Alfvenic structures, where the variations of the magnetic field components take place while the magnitude of the field remains constant; 2. Compressional, the field magnitude varies together with changes of the components; 3. Structures manifesting full reversal of the magnetic field (extremal class of Alfvenic structures). Processing of structures boundaries and plasma bulk velocity perturbations lead to the conclusion that they represent localized magnetic field tubes with enhanced parallel plasma velocity and ion beta moving together with respect to surrounding plasma. The magnetic field deflections before and after the switchbacks reveal the existence of total axial current. The electric currents are concentrated on the relatively narrow boundary layers on the surface of the tubes and determine the magnetic field perturbations inside the tube. These currents are closed on the structure surface, and typically have comparable azimuthal and the axial components. The surface of the structure may also accommodate an electromagnetic wave, that assists to particles in carrying currents. We suggest that the two types of structures we analyzed here may represent the local manifestations of the tube deformations corresponding to a saturated stage of the Firehose instability development.
We report analysis of sub-Alfvenic magnetohydrodynamic (MHD) perturbations in the low-b{eta} radial-field solar wind using the Parker Solar Probe spacecraft data from 31 October to 12 November 2018. We calculate wave vectors using the singular value decomposition method and separate the MHD perturbations into three types of linear eigenmodes (Alfven, fast, and slow modes) to explore the properties of the sub-Alfvenic perturbations and the role of compressible perturbations in solar wind heating. The MHD perturbations there show a high degree of Alfvenicity in the radial-field solar wind, with the energy fraction of Alfven modes dominating (~45%-83%) over those of fast modes (~16%-43%) and slow modes (~1%-19%). We present a detailed analysis of a representative event on 10 November 2018. Observations show that fast modes dominate magnetic compressibility, whereas slow modes dominate density compressibility. The energy damping rate of compressible modes is comparable to the heating rate, suggesting the collisionless damping of compressible modes could be significant for solar wind heating. These results are valuable for further studies of the imbalanced turbulence near the Sun and possible heating effects of compressible modes at MHD scales in low-b{eta} plasma.