No Arabic abstract
Spin-flop transition (SFT) consists in a jump-like reversal of antiferromagnetic magnetic moments into a non-collinear state when the magnetic field increases above the critical value. Potentially the SFT can be utilized in many applications of a rapidly developing antiferromagnetic spintronics. However, the difficulty of using them in conventional antiferromagnets lies in (a) too large switching magnetic fields (b) the need for presence of a magnetic anisotropy, and (c) requirement to apply magnetic field along the correspondent anisotropy axis. In this work we propose to use artificial ferrimagnets in which the spin-flop transition occurs without anisotropy and the transition field can be lowered by adjusting exchange coupling in the structure. This is proved by experiment on artificial Fe-Gd ferrimagnets where usage of Pd spacers allowed us to suppress the transition field by two orders of magnitude.
Metamaterials present the possibility of artificially generating advanced functionalities through engineering of their internal structure. Artificial spin networks, in which a large number of nanoscale magnetic elements are coupled together, are promising metamaterial candidates that enable the control of collective magnetic behavior through tuning of the local interaction between elements. In this work, the motion of magnetic domain-walls in an artificial spin network leads to a tunable stochastic response of the metamaterial, which can be tailored through an external magnetic field and local lattice modifications. This type of tunable stochastic network produces a controllable random response exploiting intrinsic stochasticity within magnetic domain-wall motion at the nanoscale. An iconic demonstration used to illustrate the control of randomness is the Galton board. In this system, multiple balls fall into an array of pegs to generate a bell-shaped curve that can be modified via the array spacing or the tilt of the board. A nanoscale recreation of this experiment using an artificial spin network is employed to demonstrate tunable stochasticity. This type of tunable stochastic network opens new paths towards post-Von Neumann computing architectures such as Bayesian sensing or random neural networks, in which stochasticity is harnessed to efficiently perform complex computational tasks.
The magnetic state of atomically thin semiconducting layered antiferromagnets such as CrI$_3$ and CrCl$_3$ can be probed by forming tunnel barriers and measuring their resistance as a function of magnetic field ($H$) and temperature ($T$). This is possible because the tunneling magnetoresistance originates from a spin-filtering effect sensitive to the relative orientation of the magnetization in different layers, i.e., to the magnetic state of the multilayers. For systems in which antiferromagnetism occurs within an individual layer, however, no spin-filtering occurs: it is unclear whether this strategy can work. To address this issue, we investigate tunnel transport through atomically thin crystals of MnPS$_3$, a van der Waals semiconductor that in the bulk exhibits easy-axis antiferromagnetic order within the layers. For thick multilayers below $Tsimeq 78$ K, a $T$-dependent magnetoresistance sets-in at $sim 5$ T, and is found to track the boundary between the antiferromagnetic and the spin-flop phases known from bulk magnetization measurements. The magnetoresistance persists down to individual MnPS$_3$ monolayers with nearly unchanged characteristic temperature and magnetic field scales, albeit with a different dependence on $H$. We discuss the implications of these finding for the magnetic state of atomically thin MnPS$_3$ crystals, conclude that antiferromagnetic correlations persist down to the level of individual monolayers, and that tunneling magnetoresistance does allow magnetism in 2D insulating materials to be detected even in the absence of spin-filtering.
Recently, signatures of nonlinear Hall effects induced by Berry-curvature dipoles have been found in atomically thin 1T/Td-WTe$_2$. In this work, we show that in strained polar transition-metal dichalcogenides(TMDs) with 2H-structures, Berry-curvature dipoles created by spin degrees of freedom lead to strong nonlinear Hall effects. Under an easily accessible uniaxial strain of order 0.2%, strong nonlinear Hall signals, characterized by a Berry-curvature dipole on the order of 1{AA}, arise in electron-doped polar TMDs such as MoSSe, and this is easily detectable experimentally. Moreover, the magnitude and sign of the nonlinear Hall current can be easily tuned by electric gating and strain. These properties can be used to distinguish nonlinear Hall effects from classical mechanisms such as ratchet effects. Importantly, our system provides a potential scheme for building electrically switchable energy-harvesting rectifiers.
We experimentally study the tunability of the cooperativity in coupled spin--cavity systems by changing the magnetic state of the spin system via an external control parameter. As model system, we use the skyrmion host material Cu$_2$OSeO$_3$ coupled to a microwave cavity resonator. In the different magnetic phases we measure a dispersive coupling between the resonator and the magnon modes and model our results by using the input--output formalism. Our results show a strong tunability of the normalized coupling rate by magnetic field, allowing us to change the magnon--photon cooperativity from 1 to 60 at the phase boundaries of the skyrmion lattice state.
We report the experimental and theoretical characterization of the angular-dependent spin dynamics in arrays of ferromagnetic nanodisks arranged on a honeycomb lattice. The magnetic field and microwave frequency dependence, measured by broadband ferromagnetic resonance, reveal a rich spectrum of modes that is strongly affected by the microstate of the network. Based on symmetry arguments with respect to the external field, we show that certain parts of the ferromagnetic network contribute to the detected signal. A comparison of the experimental data with micromagnetic simulations reveals that different subsections of the lattice predominantly contribute to the high-frequency response of the array. This is confirmed by optical characterizations using microfocused Brillouin light scattering. Furthermore, we find indications that nucleation and annihilation of vortex-like magnetization configurations in the low-field range affect the dynamics, which is different from clusters of ferromagnetic nanoellipses. Our work opens up new perspectives for designing magnonic devices that combine geometric frustration in gyrotropic vortex crystals at low frequencies with magnonic crystals at high frequencies.