Do you want to publish a course? Click here

How Was Your Weekend? Software Development Teams Working From Home During COVID-19

81   0   0.0 ( 0 )
 Added by Thomas Zimmermann
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The mass shift to working at home during the COVID-19 pandemic radically changed the way many software development teams collaborate and communicate. To investigate how team culture and team productivity may also have been affected, we conducted two surveys at a large software company. The first, an exploratory survey during the early months of the pandemic with 2,265 developer responses, revealed that many developers faced challenges reaching milestones and that their team productivity had changed. We also found through qualitative analysis that important team culture factors such as communication and social connection had been affected. For example, the simple phrase How was your weekend? had become a subtle way to show peer support. In our second survey, we conducted a quantitative analysis of the team cultural factors that emerged from our first survey to understand the prevalence of the reported changes. From 608 developer responses, we found that 74% of these respondents missed social interactions with colleagues and 51% reported a decrease in their communication ease with colleagues. We used data from the second survey to build a regression model to identify important team culture factors for modeling team productivity. We found that the ability to brainstorm with colleagues, difficulty communicating with colleagues, and satisfaction with interactions from social activities are important factors that are associated with how developers report their software development teams productivity. Our findings inform how managers and leaders in large software companies can support sustained team productivity during times of crisis and beyond.



rate research

Read More

The COVID-19 pandemic has shaken the world to its core and has provoked an overnight exodus of developers that normally worked in an office setting to working from home. The magnitude of this shift and the factors that have accompanied this new unplanned work setting go beyond what the software engineering community has previously understood to be remote work. To find out how developers and their productivity were affected, we distributed two surveys (with a combined total of 3,634 responses that answered all required questions) -- weeks apart to understand the presence and prevalence of the benefits, challenges, and opportunities to improve this special circumstance of remote work. From our thematic qualitative analysis and statistical quantitative analysis, we find that there is a dichotomy of developer experiences influenced by many different factors (that for some are a benefit, while for others a challenge). For example, a benefit for some was being close to family members but for others having family members share their working space and interrupting their focus, was a challenge. Our surveys led to powerful narratives from respondents and revealed the scale at which these experiences exist to provide insights as to how the future of (pandemic) remote work can evolve.
113 - Ziyu Xiong , Pin Li , Hanjia Lyu 2021
Since March 2020, companies nationwide have started work from home (WFH) due to the rapid increase of confirmed COVID-19 cases in an attempt to help prevent the coronavirus from spreading and rescue the economy from the pandemic. Many organizations have conducted surveys to understand peoples opinions towards WFH. However, the findings are limited due to small sample size and the dynamic topics over time. This study aims to understand the U.S. public opinions on working from home during the COVID-19 pandemic. We conduct a large-scale social media study using Twitter data to portrait different groups who have positive/negative opinions about WFH. We perform an ordinary least squares regression to investigate the relationship between the sentiment about WFH and user characteristics including gender, age, ethnicity, median household income, and population density. To better understand public opinion, we use latent Dirichlet allocation to extract topics and discover how tweet contents relate to peoples attitudes. These findings provide evidence that sentiment about WFH varies across user characteristics. Furthermore, the content analysis sheds light on the nuanced differences in sentiment and reveals disparities relate to WFH.
Following the onset of the COVID-19 pandemic and subsequent lockdowns, software engineers daily life was disrupted and abruptly forced into remote working from home. This change deeply impacted typical working routines, affecting both well-being and productivity. Moreover, this pandemic will have long-lasting effects in the software industry, with several tech companies allowing their employees to work from home indefinitely if they wish to do so. Therefore, it is crucial to analyze and understand how a typical working day looks like when working from home and how individual activities affect software developers well-being and productivity. We performed a two-wave longitudinal study involving almost 200 globally carefully selected software professionals, inferring daily activities with perceived well-being, productivity, and other relevant psychological and social variables. Results suggest that the time software engineers spent doing specific activities from home was similar when working in the office. However, we also found some significant mean differences. The amount of time developers spent on each activity was unrelated to their well-being, perceived productivity, and other variables. We conclude that working remotely is not per se a challenge for organizations or developers.
Context. As a novel coronavirus swept the world in early 2020, thousands of software developers began working from home. Many did so on short notice, under difficult and stressful conditions. Objective. This study investigates the effects of the pandemic on developers wellbeing and productivity. Method. A questionnaire survey was created mainly from existing, validated scales and translated into 12 languages. The data was analyzed using non-parametric inferential statistics and structural equation modeling. Results. The questionnaire received 2225 usable responses from 53 countries. Factor analysis supported the validity of the scales and the structural model achieved a good fit (CFI = 0.961, RMSEA = 0.051, SRMR = 0.067). Confirmatory results include: (1) the pandemic has had a negative effect on developers wellbeing and productivity; (2) productivity and wellbeing are closely related; (3) disaster preparedness, fear related to the pandemic and home office ergonomics all affect wellbeing or productivity. Exploratory analysis suggests that: (1) women, parents and people with disabilities may be disproportionately affected; (2) different people need different kinds of support. Conclusions. To improve employee productivity, software companies should focus on maximizing employee wellbeing and improving the ergonomics of employees home offices. Women, parents and disabled persons may require extra support.
The Covid-19 pandemic has radically changed our lives. Under different circumstances, people react to it in various ways. One way is to work-from-home since lockdown has been announced in many regions around the world. For some places, however, we dont know if people really work from home due to the lack of information. Since there are lots of uncertainties, it would be helpful for us to understand what really happen in these places if we can detect the reaction to the Covid-19 pandemic. Working from home indicates that people have changed the way they interact with the Internet. People used to access the Internet in the company or at school during the day. Now it is more likely that they access the Internet at home in the daytime. Therefore, the network usage changes in one place can be used to indicate if people in this place actually work from home. In this work, we reuse and analyze Trinocular outages data (around 5.1M responsive /24 blocks) over 6 months to find network usage changes by a new designed algorithm. We apply the algorithm to sets of /24 blocks in several cities and compare the detected network usage changes with real world covid-19 events to verify if the algorithm can capture the changes reacting to the Covid-19 pandemic. By applying the algorithm to all measurable /24 blocks to detect network usages changes, we conclude that network usage can be an indicator of the reaction to the Covid-19 pandemic.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا