Do you want to publish a course? Click here

Critical exponents for a percolation model on transient graphs

128   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider the bond percolation problem on a transient weighted graph induced by the excursion sets of the Gaussian free field on the corresponding cable system. Owing to the continuity of this setup and the strong Markov property of the field on the one hand, and the links with potential theory for the associated diffusion on the other, we rigorously determine the behavior of various key quantities related to the (near-)critical regime for this model. In particular, our results apply in case the base graph is the three-dimensional cubic lattice. They unveil the values of the associated critical exponents, which are explicit but not mean-field and consistent with predictions from scaling theory below the upper-critical dimension.



rate research

Read More

In high dimensional percolation at parameter $p < p_c$, the one-arm probability $pi_p(n)$ is known to decay exponentially on scale $(p_c - p)^{-1/2}$. We show the same statement for the ratio $pi_p(n) / pi_{p_c}(n)$, establishing a form of a hypothesis of scaling theory. As part of our study, we provide sharp estimates (with matching upper and lower bounds) for several quantities of interest at the critical probability $p_c$. These include the tail behavior of volumes of, and chemical distances within, spanning clusters, along with the scaling of the two-point function at mesoscopic distance from the boundary of half-spaces. As a corollary, we obtain the tightness of the number of spanning clusters of a diameter $n$ box on scale $n^{d-6}$; this result complements a lower bound of Aizenman.
114 - Akira Sakai , Gordon Slade 2018
Recently, Holmes and Perkins identified conditions which ensure that for a class of critical lattice models the scaling limit of the range is the range of super-Brownian motion. One of their conditions is an estimate on a spatial moment of order higher than four, which they verified for the sixth moment for spread-out lattice trees in dimensions $d>8$. Chen and Sakai have proved the required moment estimate for spread-out critical oriented percolation in dimensions $d+1>4+1$. We prove estimates on all moments for the spread-out critical contact process in dimensions $d>4$, which in particular fulfills the spatial moment condition of Holmes and Perkins. Our method of proof is relatively simple, and, as we show, it applies also to oriented percolation and lattice trees. Via the convergence results of Holmes and Perkins, the upper bounds on the spatial moments can in fact be promoted to asymptotic formulas with explicit constants.
237 - Lung-Chi Chen , Akira Sakai 2008
We prove that the Fourier transform of the properly-scaled normalized two-point function for sufficiently spread-out long-range oriented percolation with index alpha>0 converges to e^{-C|k|^{alphawedge2}} for some Cin(0,infty) above the upper-critical dimension 2(alphawedge2). This answers the open question remained in the previous paper [arXiv:math/0703455]. Moreover, we show that the constant C exhibits crossover at alpha=2, which is a result of interactions among occupied paths. The proof is based on a new method of estimating fractional moments for the spatial variable of the lace-expansion coefficients.
Let $ mathbb{L}^{d} = ( mathbb{Z}^{d},mathbb{E}^{d} ) $ be the $ d $-dimensional hypercubic lattice. We consider a model of inhomogeneous Bernoulli percolation on $ mathbb{L}^{d} $ in which every edge inside the $ s $-dimensional hyperplane $ mathbb{Z}^{s} times { 0 }^{d-s} $, $ 2 leq s < d $, is open with probability $ q $ and every other edge is open with probability $ p $. We prove the uniqueness of the infinite cluster in the supercritical regime whenever $ p eq p_{c}(d) $, where $ p_{c}(d) $ denotes the threshold for homogeneous percolation, and that the critical point $ (p,q_{c}(p)) $ can be approximated on the phase space by the critical points of slabs, for any $ p < p_{c}(d) $.
134 - Van Hao Can 2017
In this paper we study the moderate deviations for the magnetization of critical Curie-Weiss model. Chen, Fang and Shao considered a similar problem for non-critical model by using Stein method. By direct and simple arguments based on Laplace method, we provide an explicit formula of the error and deduce a Cramer-type result.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا