Do you want to publish a course? Click here

A cramer type moderate deviation theorem for the critical curie-weiss model

135   0   0.0 ( 0 )
 Added by Van Hao Can
 Publication date 2017
  fields Physics
and research's language is English
 Authors Van Hao Can




Ask ChatGPT about the research

In this paper we study the moderate deviations for the magnetization of critical Curie-Weiss model. Chen, Fang and Shao considered a similar problem for non-critical model by using Stein method. By direct and simple arguments based on Laplace method, we provide an explicit formula of the error and deduce a Cramer-type result.



rate research

Read More

We define a multi-group version of the mean-field spin model, also called Curie-Weiss model. It is known that, in the high temperature regime of this model, a central limit theorem holds for the vector of suitably scaled group magnetisations, that is the sum of spins belonging to each group. In this article, we prove a local central limit theorem for the group magnetisations in the high temperature regime.
A Cramer-type moderate deviation theorem quantifies the relative error of the tail probability approximation. It provides theoretical justification when the limiting tail probability can be used to estimate the tail probability under study. Chen Fang and Shao (2013) obtained a general Cramer-type moderate result using Steins method when the limiting was a normal distribution. In this paper, Cramer-type moderate deviation theorems are established for nonnormal approximation under a general Stein identity, which is satisfied via the exchangeable pair approach and Steins coupling. In particular, a Cramer-type moderate deviation theorem is obtained for the general Curie--Weiss model and the imitative monomer-dimer mean-field model.
187 - A. Bianchi , A. Bovier , D. Ioffe 2008
In this paper we study the metastable behavior of one of the simplest disordered spin system, the random field Curie-Weiss model. We will show how the potential theoretic approach can be used to prove sharp estimates on capacities and metastable exit times also in the case when the distribution of the random field is continuous. Previous work was restricted to the case when the random field takes only finitely many values, which allowed the reduction to a finite dimensional problem using lumping techniques. Here we produce the first genuine sharp estimates in a context where entropy is important.
153 - Werner Kirsch , Gabor Toth 2021
We define a multi-group version of the mean-field or Curie-Weiss spin model. For this model, we show how, analogously to the classical (single-group) model, the three temperature regimes are defined. Then we use the method of moments to determine for each regime how the vector of the group magnetisations behaves asymptotically. Some possible applications to social or political sciences are discussed.
We derive and compare various forms of local semicircle laws for random matrices with exchangeable entries which exhibit correlations that decay at a very slow rate. In fact, any $l$-point correlation will decay at a rate of $N^{-l/2}$. We call our ensembles emph{of Curie-Weiss type}, and Curie-Weiss($beta$)-distributed entries are admissible as long as $betaleq 1$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا