Do you want to publish a course? Click here

A note on $sigma$-point and nontangential convergence

101   0   0.0 ( 0 )
 Added by Jayanta Sarkar
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

In this article, we generalize a theorem of Victor L. Shapiro concerning nontangential convergence of the Poisson integral of a $L^p$-function. We introduce the notion of $sigma$-points of a locally finite measure and consider a wide class of convolution kernels. We show that convolution integrals of a measure have nontangential limits at $sigma$-points of the measure. We also investigate the relationship between $sigma$-point and the notion of the strong derivative introduced by Ramey and Ullrich. In one dimension, these two notions are the same.



rate research

Read More

Here we present some compliments to theorems of Gerard and Sibuya, on the convergence of multivariate formal power series solutions of nonlinear meromorphic Pfaffian systems. Their the most known results concern completely integrable systems with nondegenerate linear parts, whereas we consider some cases of non-integrability and degeneracy.
We provide elementary proofs for the terms that are left in the work of Kelly Bickel, Sandra Pott, Maria C. Reguera, Eric T. Sawyer, Brett D. Wick who proved the sharp weighted $A_2$ bound for Haar shifts and Haar multiplier. Our proofs use weighted square function estimate, Carleson embedding and Wilsons system.
121 - Rolando Perez Iii 2020
We prove that if f and g are holomorphic functions on an open connected domain, with the same moduli on two intersecting segments, then f = g up to the multiplication of a unimodular constant, provided the segments make an angle that is an irrational multiple of $pi$. We also prove that if f and g are functions in the Nevanlinna class, and if |f | = |g| on the unit circle and on a circle inside the unit disc, then f = g up to the multiplication of a unimodular constant.
Let $mathsf M$ and $mathsf M _{mathsf S}$ respectively denote the Hardy-Littlewood maximal operator with respect to cubes and the strong maximal operator on $mathbb{R}^n$, and let $w$ be a nonnegative locally integrable function on $mathbb{R}^n$. We define the associated Tauberian functions $mathsf{C}_{mathsf{HL},w}(alpha)$ and $mathsf{C}_{mathsf{S},w}(alpha)$ on $(0,1)$ by [ mathsf{C}_{mathsf{HL},w}(alpha) :=sup_{substack{E subset mathbb{R}^n 0 < w(E) < infty}} frac{1}{w(E)}w({x in mathbb{R}^n : mathsf M chi_E(x) > alpha}) ] and [ mathsf{C}_{mathsf{S},w}(alpha) := sup_{substack{E subset mathbb{R}^n 0 < w(E) < infty}} frac{1}{w(E)}w({x in mathbb{R}^n : mathsf M _{mathsf S}chi_E(x) > alpha}). ] Utilizing weighted Solyanik estimates for $mathsf M$ and $mathsf M_{mathsf S}$, we show that the function $mathsf{C}_{mathsf{HL},w} $ lies in the local Holder class $C^{(c_n[w]_{A_{infty}})^{-1}}(0,1)$ and $mathsf{C}_{mathsf{S},w} $ lies in the local Holder class $C^{(c_n[w]_{A_{infty}^ast})^{-1}}(0,1)$, where the constant $c_n>1$ depends only on the dimension $n$.
98 - R. B. Paris 2015
We examine a class of exact solutions for the eigenvalues and eigenfunctions of a doubly anharmonic oscillator defined by the potential $V(x)=omega^2/2 x^2+lambda x^4/4+eta x^6/6$, $eta>0$. These solutions hold provided certain constraints on the coupling parameters $omega^2$, $lambda$ and $eta$ are satisfied.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا