Do you want to publish a course? Click here

Far-Field Super-Resolution Imaging By Nonlinear Excited Evanescent Waves

83   0   0.0 ( 0 )
 Added by Zhihao Zhou
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Abbes resolution limit, one of the best-known physical limitations, poses a great challenge for any wave systems in imaging, wave transport, and dynamics. Originally formulated in linear optics, this Abbes limit can be broken using nonlinear optical interactions. Here we extend the Abbe theory into a nonlinear regime and experimentally demonstrate a far-field, label-free, and scan-free super-resolution imaging technique based on nonlinear four-wave mixing to retrieve near-field scattered evanescent waves, achieving sub-wavelength resolution of $lambda/15.6$. This method paves the way for application in biomedical imaging, semiconductor metrology, and photolithography.



rate research

Read More

The resolution of optical imaging devices is ultimately limited by the diffraction of light. To circumvent this limit, modern super-resolution microscopy techniques employ active interaction with the object by exploiting its optical nonlinearities, nonclassical properties of the illumination beam, or near-field probing. Thus, they are not applicable whenever such interaction is not possible, for example, in astronomy or non-invasive biological imaging. Far-field, linear-optical super-resolution techniques based on passive analysis of light coming from the object would cover these gaps. In this paper, we present the first proof-of-principle demonstration of such a technique. It works by accessing information about spatial correlations of the image optical field and, hence, about the object itself via measuring projections onto Hermite-Gaussian transverse spatial modes. With a basis of 21 spatial modes in both transverse dimensions, we perform two-dimensional imaging with twofold resolution enhancement beyond the diffraction limit.
Imaging below the diffraction limit is always a public interest because of the restricted resolution of conventional imaging systems. To beat the limit, evanescent harmonics decaying in space must participate in the imaging process. Here, we introduce the method of spatial spectrum sampling, a novel far-field superresolution imaging method for microwave and terahertz regime. Strong dispersion and momentum conservation allow the spoof surface plasmon polaritons (SSP) structure to become a sensitive probe for spatial harmonics. This enables that the spatial information of the targets including both propagating and evanescent components, can be extracted by tuning and recording SSP in the far field. Then, the subwavelength resolution is constructed by the inversed Fourier transform of the sampled spatial spectrum. Using the modified subwavelength metallic grating as the spoof plasmonic structure, a far-field resolution of 0.17 wavelength is numerically and experimentally verified, and two-dimensional imaging ability is also fully discussed. The imaging ability and flexibility can be further optimizing the SSP structures. We are confident that our working mechanism will have great potentials in the superresolution imaging applications in the microwave and terahertz frequency range
Raman microscopy is a valuable tool for detecting physical and chemical properties of a sample material. When probing nanomaterials or nanocomposites the spatial resolution of Raman microscopy is not always adequate as it is limited by the optical diffraction limit. Numerical post-processing with super-resolution algorithms provides a means to enhance resolution and can be straightforwardly applied. The aim of this work is to present interior-point least squares (IPLS) as a powerful tool for super-resolution in Raman imaging through constrained optimisation. IPLSs potential for super-resolution is illustrated on numerically generated test images. Its resolving power is demonstrated on Raman spectroscopic data of a polymer nanowire sample. Comparison to AFM data of the same sample substantiates that the presented method is a promising technique for analysing nanomaterial samples.
188 - Wenlin Gong , , Shensheng Han 2009
Much more image details can be resolved by improving the systems imaging resolution and enhancing the resolution beyond the systems Rayleigh diffraction limit is generally called super-resolution. By combining the sparse prior property of images with the ghost imaging method, we demonstrated experimentally that super-resolution imaging can be nonlocally achieved in the far field even without looking at the object. Physical explanation of super-resolution ghost imaging via compressive sampling and its potential applications are also discussed.
485 - A. Drezet , C. Genet 2014
We show that, contrary to the common wisdom, surface plasmon poles are not involved in the imaging process in leakage radiation microscopy. Identifying the leakage radiation modes directly from a transverse magnetic potential leads us to reconsider the surface plasmon field and unfold the non-plasmonic contribution to the image formation. While both contributions interfere in the imaging process, our analysis reveals that the reassessed plasmonic field embodies a pole mathematically similar to the usual surface plasmon pole. This removes a long-standing ambiguity associated with plasmonic signals in leakage radiation microscopy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا