Do you want to publish a course? Click here

Average scattering entropy of quantum graphs

68   0   0.0 ( 0 )
 Added by Fabiano Andrade
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The scattering amplitude in simple quantum graphs is a well-known process which may be highly complex. In this work, motivated by the Shannon entropy, we propose a methodology that associates to a graph a scattering entropy, which we call the average scattering entropy. It is defined by taking into account the period of the scattering amplitude which we calculate using the Greens function procedure. We first describe the methodology on general grounds, and then exemplify our findings considering several distinct groups of graphs. We go on and investigate other possibilities, one that contains groups of graphs with the same number of vertices, with the same degree, and the same number of edges, with the same length, but with distinct topologies and with different entropies. And the other, which contains graphs of the fishbone type, where the scattering entropy depends on the boundary conditions on the vertices of degree $1$, with the corresponding values decreasing and saturating very rapidly, as we increase the number of elementary structures in the graphs.



rate research

Read More

The property of superadditivity of the quantum relative entropy states that, in a bipartite system $mathcal{H}_{AB}=mathcal{H}_A otimes mathcal{H}_B$, for every density operator $rho_{AB}$ one has $ D( rho_{AB} || sigma_A otimes sigma_B ) ge D( rho_A || sigma_A ) +D( rho_B || sigma_B) $. In this work, we provide an extension of this inequality for arbitrary density operators $ sigma_{AB} $. More specifically, we prove that $ alpha (sigma_{AB})cdot D({rho_{AB}}||{sigma_{AB}}) ge D({rho_A}||{sigma_A})+D({rho_B}||{sigma_B})$ holds for all bipartite states $rho_{AB}$ and $sigma_{AB}$, where $alpha(sigma_{AB})= 1+2 || sigma_A^{-1/2} otimes sigma_B^{-1/2} , sigma_{AB} , sigma_A^{-1/2} otimes sigma_B^{-1/2} - mathbb{1}_{AB} ||_infty$.
We consider sequences of random quantum channels defined using the Stinespring formula with Haar-distributed random orthogonal matrices. For any fixed sequence of input states, we study the asymptotic eigenvalue distribution of the outputs through tensor powers of random channels. We show that the input states achieving minimum output entropy are tensor products of maximally entangled states (Bell states) when the tensor power is even. This phenomenon is completely different from the one for random quantum channels constructed from Haar-distributed random unitary matrices, which leads us to formulate some conjectures about the regularized minimum output entropy.
A rigorous proof is presented of the boundedness of the entanglement entropy of a block of spins for the ground state of the one-dimensional quantum Ising model with sufficiently strong transverse field. This is proved by a refinement of the arguments in the earlier work by the same authors (J. Statist. Phys. 131 (2008) 305-339). The proof is geometrical, and utilises a transformation to a model of classical probability called the continuum random-cluster model. Our method of proof is fairly robust, and applies also to certain disordered systems.
It is well known in the realm of quantum mechanics and information theory that the entropy is non-decreasing for the class of unital physical processes. However, in general, the entropy does not exhibit monotonic behavior. This has restricted the use of entropy change in characterizing evolution processes. Recently, a lower bound on the entropy change was provided in the work of Buscemi, Das, and Wilde~[Phys.~Rev.~A~93(6),~062314~(2016)]. We explore the limit that this bound places on the physical evolution of a quantum system and discuss how these limits can be used as witnesses to characterize quantum dynamics. In particular, we derive a lower limit on the rate of entropy change for memoryless quantum dynamics, and we argue that it provides a witness of non-unitality. This limit on the rate of entropy change leads to definitions of several witnesses for testing memory effects in quantum dynamics. Furthermore, from the aforementioned lower bound on entropy change, we obtain a measure of non-unitarity for unital evolutions.
In finite dimensions, we provide characterizations of the quantum dynamical semigroups that do not decrease the von Neumann, the Tsallis and the Renyi entropies, as well as a family of functions of density operators strictly related to the Schatten norms. A few remarkable consequences --- in particular, a description of the associated infinitesimal generators --- are derived, and some significant examples are discussed. Extensions of these results to semigroups of trace-preserving positive (i.e., not necessarily completely positive) maps and to a more general class of quantum entropies are also considered.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا