Do you want to publish a course? Click here

Fundamental limits on quantum dynamics based on entropy change

83   0   0.0 ( 0 )
 Added by Siddhartha Das
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is well known in the realm of quantum mechanics and information theory that the entropy is non-decreasing for the class of unital physical processes. However, in general, the entropy does not exhibit monotonic behavior. This has restricted the use of entropy change in characterizing evolution processes. Recently, a lower bound on the entropy change was provided in the work of Buscemi, Das, and Wilde~[Phys.~Rev.~A~93(6),~062314~(2016)]. We explore the limit that this bound places on the physical evolution of a quantum system and discuss how these limits can be used as witnesses to characterize quantum dynamics. In particular, we derive a lower limit on the rate of entropy change for memoryless quantum dynamics, and we argue that it provides a witness of non-unitality. This limit on the rate of entropy change leads to definitions of several witnesses for testing memory effects in quantum dynamics. Furthermore, from the aforementioned lower bound on entropy change, we obtain a measure of non-unitarity for unital evolutions.



rate research

Read More

Quantum channels underlie the dynamics of quantum systems, but in many practical settings it is the channels themselves that require processing. We establish universal limitations on the processing of both quantum states and channels, expressed in the form of no-go theorems and quantitative bounds for the manipulation of general quantum channel resources under the most general transformation protocols. Focusing on the class of distillation tasks -- which can be understood either as the purification of noisy channels into unitary ones, or the extraction of state-based resources from channels -- we develop fundamental restrictions on the error incurred in such transformations and comprehensive lower bounds for the overhead of any distillation protocol. In the asymptotic setting, our results yield broadly applicable bounds for rates of distillation. We demonstrate our results through applications to fault-tolerant quantum computation, where we obtain state-of-the-art lower bounds for the overhead cost of magic state distillation, as well as to quantum communication, where we recover a number of strong converse bounds for quantum channel capacity.
We present efficient quantum algorithms for simulating time-dependent Hamiltonian evolution of general input states using an oracular model of a quantum computer. Our algorithms use either constant or adaptively chosen time steps and are significant because they are the first to have time-complexities that are comparable to the best known methods for simulating time-independent Hamiltonian evolution, given appropriate smoothness criteria on the Hamiltonian are satisfied. We provide a thorough cost analysis of these algorithms that considers discretizion errors in both the time and the representation of the Hamiltonian. In addition, we provide the first upper bounds for the error in Lie-Trotter-Suzuki approximations to unitary evolution operators, that use adaptively chosen time steps.
We consider sequences of random quantum channels defined using the Stinespring formula with Haar-distributed random orthogonal matrices. For any fixed sequence of input states, we study the asymptotic eigenvalue distribution of the outputs through tensor powers of random channels. We show that the input states achieving minimum output entropy are tensor products of maximally entangled states (Bell states) when the tensor power is even. This phenomenon is completely different from the one for random quantum channels constructed from Haar-distributed random unitary matrices, which leads us to formulate some conjectures about the regularized minimum output entropy.
Quantum technology offers great advantages in many applications by exploiting quantum resources like nonclassicality, coherence, and entanglement. In practice, an environmental noise unavoidably affects a quantum system and it is thus an important issue to protect quantum resources from noise. In this work, we investigate the manipulation of quantum resources possessing the so-called tensorization property and identify the fundamental limitations on concentrating and preserving those quantum resources. We show that if a resource measure satisfies the tensorization property as well as the monotonicity, it is impossible to concentrate multiple noisy copies into a single better resource by free operations. Furthermore, we show that quantum resources cannot be better protected from channel noises by employing correlated input states on joint channels if the channel output resource exhibits the tensorization property. We address several practical resource measures where our theorems apply and manifest their physical meanings in quantum resource manipulation.
The scattering amplitude in simple quantum graphs is a well-known process which may be highly complex. In this work, motivated by the Shannon entropy, we propose a methodology that associates to a graph a scattering entropy, which we call the average scattering entropy. It is defined by taking into account the period of the scattering amplitude which we calculate using the Greens function procedure. We first describe the methodology on general grounds, and then exemplify our findings considering several distinct groups of graphs. We go on and investigate other possibilities, one that contains groups of graphs with the same number of vertices, with the same degree, and the same number of edges, with the same length, but with distinct topologies and with different entropies. And the other, which contains graphs of the fishbone type, where the scattering entropy depends on the boundary conditions on the vertices of degree $1$, with the corresponding values decreasing and saturating very rapidly, as we increase the number of elementary structures in the graphs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا