No Arabic abstract
Cassegrain designs can be used to build thin lenses. We analyze the relationships between system thickness and aperture sizes of the two mirrors as well as FoV size. Our analysis shows that decrease in lens thickness imposes tight constraint on the aperture and FoV size. To mitigate this limitation, we propose to fill the gaps between the primary and the secondary with high index material. The Gassegrain optics cuts the track length into half and high index material reduces ray angle and height, consequently the incident ray angle can be increased, i.e., the FoV angle is extended. Defining telephoto ratio as the ratio of lens thickness to focal length, we achieve telephoto ratios as small as 0.43 for a visible Cassegrain thin lens and 1.20 for an infrared Cassegrain thin lens. To achieve an arbitrary FoV coverage, we present an strategy by integrating multiple thin lenses on one plane with each unit covering a different FoV region. To avoid physically tilting each unit, we propose beam steering with metasurface. By image stitching, we obtain wide FoV images.
We experimentally demonstrate ultrathin flat lenses with a thickness of 7 {AA}, which corresponds to the fundamental physical limit of the thickness of the material, is fabricated in a large area, monolayer, CVD-prepared tungsten chalcogenides single crystals using the low-cost flexible laser writing method. The lenses apply the ultra-high refractive index to introduce abrupt amplitude modulation of the incident light to achieve three-dimensional (3D) focusing diffraction-limited resolution (0.5{lambda}) and a focusing efficiency as high as 31%. An analytical physical model based diffraction theory is derived to simulate the focusing process, which shows excellent agreement with the experimental results.
Two-dimensional (2D) materials have emerged as promising candidates for miniaturized optoelectronic devices, due to their strong inelastic interactions with light. On the other hand, a miniaturized optical system also requires strong elastic light-matter interactions to control the flow of light. Here, we report giant optical path length (OPL) from a single-layer molybdenum disulfide (MoS2), which is around one order of magnitude larger than that from a single-layer graphene. Using such giant OPL to engineer the phase front of optical beams, we demonstrated, to the best of our knowledge, the worlds thinnest optical lens consisting of a few layers of MoS2 less than 6.3 nm thick. Moreover, we show that MoS2 has much better dielectric response than good conductor (like gold) and other dielectric materials (like Si, SiO2 or graphene). By taking advantage of the giant elastic scattering efficiency in ultra-thin high-index 2D materials, we demonstrated high-efficiency gratings based on a single- or few-layers of MoS2. The capability of manipulating the flow of light in 2D materials opens an exciting avenue towards unprecedented miniaturization of optical components and the integration of advanced optical functionalities.
When light travels through scattering media, speckles (spatially random distribution of fluctuated intensities) are formed due to the interference of light travelling along different optical paths, preventing the perception of structure, absolute location and dimension of a target within or on the other side of the medium. Currently, the prevailing techniques such as wavefront shaping, optical phase conjugation, scattering matrix measurement, and speckle autocorrelation imaging can only picture the target structure in the absence of prior information. Here we show that a scattering medium can be conceptualized as an assembly of randomly packed pinhole cameras, and the corresponding speckle pattern is a superposition of randomly shifted pinhole images. This provides a new perspective to bridge target, scattering medium, and speckle pattern, allowing one to localize and profile a target quantitatively from speckle patterns perceived from the other side of the scattering medium, which is impossible with all existing methods. The method also allows us to interpret some phenomena of diffusive light that are otherwise challenging to understand. For example, why the morphological appearance of speckle patterns changes with the target, why information is difficult to be extracted from thick scattering media, and what determines the capability of seeing through scattering media. In summary, the concept, whilst in its infancy, opens a new door to unveiling scattering media and information extraction from scattering media in real time.
FlatCam is a thin form-factor lensless camera that consists of a coded mask placed on top of a bare, conventional sensor array. Unlike a traditional, lens-based camera where an image of the scene is directly recorded on the sensor pixels, each pixel in FlatCam records a linear combination of light from multiple scene elements. A computational algorithm is then used to demultiplex the recorded measurements and reconstruct an image of the scene. FlatCam is an instance of a coded aperture imaging system; however, unlike the vast majority of related work, we place the coded mask extremely close to the image sensor that can enable a thin system. We employ a separable mask to ensure that both calibration and image reconstruction are scalable in terms of memory requirements and computational complexity. We demonstrate the potential of the FlatCam design using two prototypes: one at visible wavelengths and one at infrared wavelengths.
We closely study the local amplifications of visible light on a thin dielectric slab presenting a sub-wavelength array of small, rectangular, bottom-closed holes. The high-quality Fabry-Perot resonances of eigen modes which vertically oscillate, and their corresponding near-field maps, especially inside the voids, are numerically quantified with RCWA and analytically interpreted through a quasi-exact modal expansion. This last method gives explicit opto-geometrical rules allowing to finely understand the general trends in 1D and 2D. In more advanced examples, we show that multi-cavity and/or slightly thicker two-dimensional gratings may generate anomalously frequency-susceptible surfaces over a broad spectral range. Also, dielectric membranes a few nanometers thick only, can catch light, with tremendous enhancements of the electric field intensity ($>10^6$) that largely extends in the surrounding space.