No Arabic abstract
Person Re-identification (ReID) is a critical computer vision task which aims to match the same person in images or video sequences. Most current works focus on settings where the resolution of images is kept the same. However, the resolution is a crucial factor in person ReID, especially when the cameras are at different distances from the person or the cameras models are different from each other. In this paper, we propose a novel two-stream network with a lightweight resolution association ReID feature transformation (RAFT) module and a self-weighted attention (SWA) ReID module to evaluate features under different resolutions. RAFT transforms the low resolution features to corresponding high resolution features. SWA evaluates both features to get weight factors for the person ReID. Both modules are jointly trained to get a resolution-invariant representation. Extensive experiments on five benchmark datasets show the effectiveness of our method. For instance, we achieve Rank-1 accuracy of 43.3% and 83.2% on CAVIAR and MLR-CUHK03, outperforming the state-of-the-art.
Most existing works in Person Re-identification (ReID) focus on settings where illumination either is kept the same or has very little fluctuation. However, the changes in the illumination degree may affect the robustness of a ReID algorithm significantly. To address this problem, we proposed a Two-Stream Network that can separate ReID features from lighting features to enhance ReID performance. Its innovations are threefold: (1) A discriminative entropy loss to ensure the ReID features contain no lighting information. (2) A ReID Teacher model trained by images under neutral lighting conditions to guide ReID classification. (3) An illumination Teacher model trained by the differences between the illumination-adjusted and original images to guide illumination classification. We construct two augmented datasets by synthetically changing a set of predefined lighting conditions in two of the most popular ReID benchmarks: Market1501 and DukeMTMC-ReID. Experiments demonstrate that our algorithm outperforms other state-of-the-art works and particularly potent in handling images under extremely low light.
Person re-identification (re-id) aims to retrieve images of same identities across different camera views. Resolution mismatch occurs due to varying distances between person of interest and cameras, this significantly degrades the performance of re-id in real world scenarios. Most of the existing approaches resolve the re-id task as low resolution problem in which a low resolution query image is searched in a high resolution images gallery. Several approaches apply image super resolution techniques to produce high resolution images but ignore the multiple resolutions of gallery images which is a better realistic scenario. In this paper, we introduce channel correlations to improve the learning of features from the degraded data. In addition, to overcome the problem of multiple resolutions we propose a Resolution based Feature Distillation (RFD) approach. Such an approach learns resolution invariant features by filtering the resolution related features from the final feature vectors that are used to compute the distance matrix. We tested the proposed approach on two synthetically created datasets and on one original multi resolution dataset with real degradation. Our approach improves the performance when multiple resolutions occur in the gallery and have comparable results in case of single resolution (low resolution re-id).
RGB-Infrared (RGB-IR) person re-identification (ReID) is a technology where the system can automatically identify the same person appearing at different parts of a video when light is unavailable. The critical challenge of this task is the cross-modality gap of features under different modalities. To solve this challenge, we proposed a Teacher-Student GAN model (TS-GAN) to adopt different domains and guide the ReID backbone to learn better ReID information. (1) In order to get corresponding RGB-IR image pairs, the RGB-IR Generative Adversarial Network (GAN) was used to generate IR images. (2) To kick-start the training of identities, a ReID Teacher module was trained under IR modality person images, which is then used to guide its Student counterpart in training. (3) Likewise, to better adapt different domain features and enhance model ReID performance, three Teacher-Student loss functions were used. Unlike other GAN based models, the proposed model only needs the backbone module at the test stage, making it more efficient and resource-saving. To showcase our models capability, we did extensive experiments on the newly-released SYSU-MM01 RGB-IR Re-ID benchmark and achieved superior performance to the state-of-the-art with 49.8% Rank-1 and 47.4% mAP.
Clothing changes and lack of data labels are both crucial challenges in person ReID. For the former challenge, people may occur multiple times at different locations wearing different clothing. However, most of the current person ReID research works focus on the benchmarks in which a persons clothing is kept the same all the time. For the last challenge, some researchers try to make model learn information from a labeled dataset as a source to an unlabeled dataset. Whereas purely unsupervised training is less used. In this paper, we aim to solve both problems at the same time. We design a novel unsupervised model, Sync-Person-Cloud ReID, to solve the unsupervised clothing change person ReID problem. We developer a purely unsupervised clothing change person ReID pipeline with person sync augmentation operation and same person feature restriction. The person sync augmentation is to supply additional same person resources. These same persons resources can be used as part supervised input by same person feature restriction. The extensive experiments on clothing change ReID datasets show the out-performance of our methods.
We present a vehicle self-localization method using point-based deep neural networks. Our approach processes measurements and point features, i.e. landmarks, from a high-definition digital map to infer the vehicles pose. To learn the best association and incorporate local information between the point sets, we propose an attention mechanism that matches the measurements to the corresponding landmarks. Finally, we use this representation for the point-cloud registration and the subsequent pose regression task. Furthermore, we introduce a training simulation framework that artificially generates measurements and landmarks to facilitate the deployment process and reduce the cost of creating extensive datasets from real-world data. We evaluate our method on our dataset, as well as an adapted version of the Kitti odometry dataset, where we achieve superior performance compared to related approaches; and additionally show dominant generalization capabilities.