Do you want to publish a course? Click here

FaceX-Zoo: A PyTorch Toolbox for Face Recognition

179   0   0.0 ( 0 )
 Added by Jun Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Deep learning based face recognition has achieved significant progress in recent years. Yet, the practical model production and further research of deep face recognition are in great need of corresponding public support. For example, the production of face representation network desires a modular training scheme to consider the proper choice from various candidates of state-of-the-art backbone and training supervision subject to the real-world face recognition demand; for performance analysis and comparison, the standard and automatic evaluation with a bunch of models on multiple benchmarks will be a desired tool as well; besides, a public groundwork is welcomed for deploying the face recognition in the shape of holistic pipeline. Furthermore, there are some newly-emerged challenges, such as the masked face recognition caused by the recent world-wide COVID-19 pandemic, which draws increasing attention in practical applications. A feasible and elegant solution is to build an easy-to-use unified framework to meet the above demands. To this end, we introduce a novel open-source framework, named FaceX-Zoo, which is oriented to the research-development community of face recognition. Resorting to the highly modular and scalable design, FaceX-Zoo provides a training module with various supervisory heads and backbones towards state-of-the-art face recognition, as well as a standardized evaluation module which enables to evaluate the models in most of the popular benchmarks just by editing a simple configuration. Also, a simple yet fully functional face SDK is provided for the validation and primary application of the trained models. Rather than including as many as possible of the prior techniques, we enable FaceX-Zoo to easily upgrade and extend along with the development of face related domains. The source code and models are available at https://github.com/JDAI-CV/FaceX-Zoo.



rate research

Read More

General Instance Re-identification is a very important task in the computer vision, which can be widely used in many practical applications, such as person/vehicle re-identification, face recognition, wildlife protection, commodity tracing, and snapshop, etc.. To meet the increasing application demand for general instance re-identification, we present FastReID as a widely used software system in JD AI Research. In FastReID, highly modular and extensible design makes it easy for the researcher to achieve new research ideas. Friendly manageable system configuration and engineering deployment functions allow practitioners to quickly deploy models into productions. We have implemented some state-of-the-art projects, including person re-id, partial re-id, cross-domain re-id and vehicle re-id, and plan to release these pre-trained models on multiple benchmark datasets. FastReID is by far the most general and high-performance toolbox that supports single and multiple GPU servers, you can reproduce our project results very easily and are very welcome to use it, the code and models are available at https://github.com/JDAI-CV/fast-reid.
We present MMOCR-an open-source toolbox which provides a comprehensive pipeline for text detection and recognition, as well as their downstream tasks such as named entity recognition and key information extraction. MMOCR implements 14 state-of-the-art algorithms, which is significantly more than all the existing open-source OCR projects we are aware of to date. To facilitate future research and industrial applications of text recognition-related problems, we also provide a large number of trained models and detailed benchmarks to give insights into the performance of text detection, recognition and understanding. MMOCR is publicly released at https://github.com/open-mmlab/mmocr.
Recently, face recognition in the wild has achieved remarkable success and one key engine is the increasing size of training data. For example, the largest face dataset, WebFace42M contains about 2 million identities and 42 million faces. However, a massive number of faces raise the constraints in training time, computing resources, and memory cost. The current research on this problem mainly focuses on designing an efficient Fully-connected layer (FC) to reduce GPU memory consumption caused by a large number of identities. In this work, we relax these constraints by resolving the redundancy problem of the up-to-date face datasets caused by the greedily collecting operation (i.e. the core-set selection perspective). As the first attempt in this perspective on the face recognition problem, we find that existing methods are limited in both performance and efficiency. For superior cost-efficiency, we contribute a novel filtering strategy dubbed Face-NMS. Face-NMS works on feature space and simultaneously considers the local and global sparsity in generating core sets. In practice, Face-NMS is analogous to Non-Maximum Suppression (NMS) in the object detection community. It ranks the faces by their potential contribution to the overall sparsity and filters out the superfluous face in the pairs with high similarity for local sparsity. With respect to the efficiency aspect, Face-NMS accelerates the whole pipeline by applying a smaller but sufficient proxy dataset in training the proxy model. As a result, with Face-NMS, we successfully scale down the WebFace42M dataset to 60% while retaining its performance on the main benchmarks, offering a 40% resource-saving and 1.64 times acceleration. The code is publicly available for reference at https://github.com/HuangJunJie2017/Face-NMS.
393 - Yaping Jing , Xuequan Lu , 2021
Face recognition is one of the most studied research topics in the community. In recent years, the research on face recognition has shifted to using 3D facial surfaces, as more discriminating features can be represented by the 3D geometric information. This survey focuses on reviewing the 3D face recognition techniques developed in the past ten years which are generally categorized into conventional methods and deep learning methods. The categorized techniques are evaluated using detailed descriptions of the representative works. The advantages and disadvantages of the techniques are summarized in terms of accuracy, complexity and robustness to face variation (expression, pose and occlusions, etc). The main contribution of this survey is that it comprehensively covers both conventional methods and deep learning methods on 3D face recognition. In addition, a review of available 3D face databases is provided, along with the discussion of future research challenges and directions.
Face identification/recognition has significantly advanced over the past years. However, most of the proposed approaches rely on static RGB frames and on neutral facial expressions. This has two disadvantages. First, important facial shape cues are ignored. Second, facial deformations due to expressions can have an impact on the performance of such a method. In this paper, we propose a novel framework for dynamic 3D face identification/recognition based on facial keypoints. Each dynamic sequence of facial expressions is represented as a spatio-temporal graph, which is constructed using 3D facial landmarks. Each graph node contains local shape and texture features that are extracted from its neighborhood. For the classification/identification of faces, a Spatio-temporal Graph Convolutional Network (ST-GCN) is used. Finally, we evaluate our approach on a challenging dynamic 3D facial expression dataset.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا