No Arabic abstract
General Instance Re-identification is a very important task in the computer vision, which can be widely used in many practical applications, such as person/vehicle re-identification, face recognition, wildlife protection, commodity tracing, and snapshop, etc.. To meet the increasing application demand for general instance re-identification, we present FastReID as a widely used software system in JD AI Research. In FastReID, highly modular and extensible design makes it easy for the researcher to achieve new research ideas. Friendly manageable system configuration and engineering deployment functions allow practitioners to quickly deploy models into productions. We have implemented some state-of-the-art projects, including person re-id, partial re-id, cross-domain re-id and vehicle re-id, and plan to release these pre-trained models on multiple benchmark datasets. FastReID is by far the most general and high-performance toolbox that supports single and multiple GPU servers, you can reproduce our project results very easily and are very welcome to use it, the code and models are available at https://github.com/JDAI-CV/fast-reid.
Person re-identification (re-ID), which aims to re-identify people across different camera views, has been significantly advanced by deep learning in recent years, particularly with convolutional neural networks (CNNs). In this paper, we present Torchreid, a software library built on PyTorch that allows fast development and end-to-end training and evaluation of deep re-ID models. As a general-purpose framework for person re-ID research, Torchreid provides (1) unified data loaders that support 15 commonly used re-ID benchmark datasets covering both image and video domains, (2) streamlined pipelines for quick development and benchmarking of deep re-ID models, and (3) implementations of the latest re-ID CNN architectures along with their pre-trained models to facilitate reproducibility as well as future research. With a high-level modularity in its design, Torchreid offers a great flexibility to allow easy extension to new datasets, CNN models and loss functions.
Deep learning based face recognition has achieved significant progress in recent years. Yet, the practical model production and further research of deep face recognition are in great need of corresponding public support. For example, the production of face representation network desires a modular training scheme to consider the proper choice from various candidates of state-of-the-art backbone and training supervision subject to the real-world face recognition demand; for performance analysis and comparison, the standard and automatic evaluation with a bunch of models on multiple benchmarks will be a desired tool as well; besides, a public groundwork is welcomed for deploying the face recognition in the shape of holistic pipeline. Furthermore, there are some newly-emerged challenges, such as the masked face recognition caused by the recent world-wide COVID-19 pandemic, which draws increasing attention in practical applications. A feasible and elegant solution is to build an easy-to-use unified framework to meet the above demands. To this end, we introduce a novel open-source framework, named FaceX-Zoo, which is oriented to the research-development community of face recognition. Resorting to the highly modular and scalable design, FaceX-Zoo provides a training module with various supervisory heads and backbones towards state-of-the-art face recognition, as well as a standardized evaluation module which enables to evaluate the models in most of the popular benchmarks just by editing a simple configuration. Also, a simple yet fully functional face SDK is provided for the validation and primary application of the trained models. Rather than including as many as possible of the prior techniques, we enable FaceX-Zoo to easily upgrade and extend along with the development of face related domains. The source code and models are available at https://github.com/JDAI-CV/FaceX-Zoo.
Person re-identification (Re-ID) aims to match pedestrians under dis-joint cameras. Most Re-ID methods formulate it as visual representation learning and image search, and its accuracy is consequently affected greatly by the search space. Spatial-temporal information has been proven to be efficient to filter irrelevant negative samples and significantly improve Re-ID accuracy. However, existing spatial-temporal person Re-ID methods are still rough and do not exploit spatial-temporal information sufficiently. In this paper, we propose a novel Instance-level and Spatial-Temporal Disentangled Re-ID method (InSTD), to improve Re-ID accuracy. In our proposed framework, personalized information such as moving direction is explicitly considered to further narrow down the search space. Besides, the spatial-temporal transferring probability is disentangled from joint distribution to marginal distribution, so that outliers can also be well modeled. Abundant experimental analyses are presented, which demonstrates the superiority and provides more insights into our method. The proposed method achieves mAP of 90.8% on Market-1501 and 89.1% on DukeMTMC-reID, improving from the baseline 82.2% and 72.7%, respectively. Besides, in order to provide a better benchmark for person re-identification, we release a cleaned data list of DukeMTMC-reID with this paper: https://github.com/RenMin1991/cleaned-DukeMTMC-reID/
We introduce TIDE, a framework and associated toolbox for analyzing the sources of error in object detection and instance segmentation algorithms. Importantly, our framework is applicable across datasets and can be applied directly to output prediction files without required knowledge of the underlying prediction system. Thus, our framework can be used as a drop-in replacement for the standard mAP computation while providing a comprehensive analysis of each models strengths and weaknesses. We segment errors into six types and, crucially, are the first to introduce a technique for measuring the contribution of each error in a way that isolates its effect on overall performance. We show that such a representation is critical for drawing accurate, comprehensive conclusions through in-depth analysis across 4 datasets and 7 recognition models. Available at https://dbolya.github.io/tide/
Vehicle Re-Identification (Re-ID) aims to identify the same vehicle across different cameras, hence plays an important role in modern traffic management systems. The technical challenges require the algorithms must be robust in different views, resolution, occlusion and illumination conditions. In this paper, we first analyze the main factors hindering the Vehicle Re-ID performance. We then present our solutions, specifically targeting the dataset Track 2 of the 5th AI City Challenge, including (1) reducing the domain gap between real and synthetic data, (2) network modification by stacking multi heads with attention mechanism, (3) adaptive loss weight adjustment. Our method achieves 61.34% mAP on the private CityFlow testset without using external dataset or pseudo labeling, and outperforms all previous works at 87.1% mAP on the Veri benchmark. The code is available at https://github.com/cybercore-co-ltd/track2_aicity_2021.