Do you want to publish a course? Click here

3D-ANAS: 3D Asymmetric Neural Architecture Search for Fast Hyperspectral Image Classification

103   0   0.0 ( 0 )
 Added by Haokui Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Hyperspectral images involve abundant spectral and spatial information, playing an irreplaceable role in land-cover classification. Recently, based on deep learning technologies, an increasing number of HSI classification approaches have been proposed, which demonstrate promising performance. However, previous studies suffer from two major drawbacks: 1) the architecture of most deep learning models is manually designed, relies on specialized knowledge, and is relatively tedious. Moreover, in HSI classifications, datasets captured by different sensors have different physical properties. Correspondingly, different models need to be designed for different datasets, which further increases the workload of designing architectures; 2) the mainstream framework is a patch-to-pixel framework. The overlap regions of patches of adjacent pixels are calculated repeatedly, which increases computational cost and time cost. Besides, the classification accuracy is sensitive to the patch size, which is artificially set based on extensive investigation experiments. To overcome the issues mentioned above, we firstly propose a 3D asymmetric neural network search algorithm and leverage it to automatically search for efficient architectures for HSI classifications. By analysing the characteristics of HSIs, we specifically build a 3D asymmetric decomposition search space, where spectral and spatial information are processed with different decomposition convolutions. Furthermore, we propose a new fast classification framework, i,e., pixel-to-pixel classification framework, which has no repetitive operations and reduces the overall cost. Experiments on three public HSI datasets captured by different sensors demonstrate the networks designed by our 3D-ANAS achieve competitive performance compared to several state-of-the-art methods, while having a much faster inference speed.



rate research

Read More

3D convolution neural networks (CNN) have been proved very successful in parsing organs or tumours in 3D medical images, but it remains sophisticated and time-consuming to choose or design proper 3D networks given different task contexts. Recently, Neural Architecture Search (NAS) is proposed to solve this problem by searching for the best network architecture automatically. However, the inconsistency between search stage and deployment stage often exists in NAS algorithms due to memory constraints and large search space, which could become more serious when applying NAS to some memory and time consuming tasks, such as 3D medical image segmentation. In this paper, we propose coarse-to-fine neural architecture search (C2FNAS) to automatically search a 3D segmentation network from scratch without inconsistency on network size or input size. Specifically, we divide the search procedure into two stages: 1) the coarse stage, where we search the macro-level topology of the network, i.e. how each convolution module is connected to other modules; 2) the fine stage, where we search at micro-level for operations in each cell based on previous searched macro-level topology. The coarse-to-fine manner divides the search procedure into two consecutive stages and meanwhile resolves the inconsistency. We evaluate our method on 10 public datasets from Medical Segmentation Decalthon (MSD) challenge, and achieve state-of-the-art performance with the network searched using one dataset, which demonstrates the effectiveness and generalization of our searched models.
125 - Haokui Zhang , Yu Liu , Bei Fang 2020
Hyperspectral image(HSI) classification has been improved with convolutional neural network(CNN) in very recent years. Being different from the RGB datasets, different HSI datasets are generally captured by various remote sensors and have different spectral configurations. Moreover, each HSI dataset only contains very limited training samples and thus it is prone to overfitting when using deep CNNs. In this paper, we first deliver a 3D asymmetric inception network, AINet, to overcome the overfitting problem. With the emphasis on spectral signatures over spatial contexts of HSI data, AINet can convey and classify the features effectively. In addition, the proposed data fusion transfer learning strategy is beneficial in boosting the classification performance. Extensive experiments show that the proposed approach beat all of the state-of-art methods on several HSI benchmarks, including Pavia University, Indian Pines and Kennedy Space Center(KSC). Code can be found at: https://github.com/UniLauX/AINet.
By considering the spectral signature as a sequence, recurrent neural networks (RNNs) have been successfully used to learn discriminative features from hyperspectral images (HSIs) recently. However, most of these models only input the whole spectral bands into RNNs directly, which may not fully explore the specific properties of HSIs. In this paper, we propose a cascaded RNN model using gated recurrent units (GRUs) to explore the redundant and complementary information of HSIs. It mainly consists of two RNN layers. The first RNN layer is used to eliminate redundant information between adjacent spectral bands, while the second RNN layer aims to learn the complementary information from non-adjacent spectral bands. To improve the discriminative ability of the learned features, we design two strategies for the proposed model. Besides, considering the rich spatial information contained in HSIs, we further extend the proposed model to its spectral-spatial counterpart by incorporating some convolutional layers. To test the effectiveness of our proposed models, we conduct experiments on two widely used HSIs. The experimental results show that our proposed models can achieve better results than the compared models.
In 3D shape recognition, multi-view based methods leverage humans perspective to analyze 3D shapes and have achieved significant outcomes. Most existing research works in deep learning adopt handcrafted networks as backbones due to their high capacity of feature extraction, and also benefit from ImageNet pretraining. However, whether these network architectures are suitable for 3D analysis or not remains unclear. In this paper, we propose a neural architecture search method named Auto-MVCNN which is particularly designed for optimizing architecture in multi-view 3D shape recognition. Auto-MVCNN extends gradient-based frameworks to process multi-view images, by automatically searching the fusion cell to explore intrinsic correlation among view features. Moreover, we develop an end-to-end scheme to enhance retrieval performance through the trade-off parameter search. Extensive experimental results show that the searched architectures significantly outperform manually designed counterparts in various aspects, and our method achieves state-of-the-art performance at the same time.
We present a neural architecture search (NAS) technique to enhance the performance of unsupervised image de-noising, in-painting and super-resolution under the recently proposed Deep Image Prior (DIP). We show that evolutionary search can automatically optimize the encoder-decoder (E-D) structure and meta-parameters of the DIP network, which serves as a content-specific prior to regularize these single image restoration tasks. Our binary representation encodes the design space for an asymmetric E-D network that typically converges to yield a content-specific DIP within 10-20 generations using a population size of 500. The optimized architectures consistently improve upon the visual quality of classical DIP for a diverse range of photographic and artistic content.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا