Do you want to publish a course? Click here

Auto-MVCNN: Neural Architecture Search for Multi-view 3D Shape Recognition

108   0   0.0 ( 0 )
 Added by Zhaoqun Li
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In 3D shape recognition, multi-view based methods leverage humans perspective to analyze 3D shapes and have achieved significant outcomes. Most existing research works in deep learning adopt handcrafted networks as backbones due to their high capacity of feature extraction, and also benefit from ImageNet pretraining. However, whether these network architectures are suitable for 3D analysis or not remains unclear. In this paper, we propose a neural architecture search method named Auto-MVCNN which is particularly designed for optimizing architecture in multi-view 3D shape recognition. Auto-MVCNN extends gradient-based frameworks to process multi-view images, by automatically searching the fusion cell to explore intrinsic correlation among view features. Moreover, we develop an end-to-end scheme to enhance retrieval performance through the trade-off parameter search. Extensive experimental results show that the searched architectures significantly outperform manually designed counterparts in various aspects, and our method achieves state-of-the-art performance at the same time.



rate research

Read More

Three-dimensional (3D) shape recognition has drawn much research attention in the field of computer vision. The advances of deep learning encourage various deep models for 3D feature representation. For point cloud and multi-view data, two popular 3D data modalities, different models are proposed with remarkable performance. However the relation between point cloud and views has been rarely investigated. In this paper, we introduce Point-View Relation Network (PVRNet), an effective network designed to well fuse the view features and the point cloud feature with a proposed relation score module. More specifically, based on the relation score module, the point-single-view fusion feature is first extracted by fusing the point cloud feature and each single view feature with point-singe-view relation, then the point-multi-view fusion feature is extracted by fusing the point cloud feature and the features of different number of views with point-multi-view relation. Finally, the point-single-view fusion feature and point-multi-view fusion feature are further combined together to achieve a unified representation for a 3D shape. Our proposed PVRNet has been evaluated on ModelNet40 dataset for 3D shape classification and retrieval. Experimental results indicate our model can achieve significant performance improvement compared with the state-of-the-art models.
Traditional neural architecture search (NAS) has a significant impact in computer vision by automatically designing network architectures for various tasks. In this paper, binarized neural architecture search (BNAS), with a search space of binarized convolutions, is introduced to produce extremely compressed models to reduce huge computational cost on embedded devices for edge computing. The BNAS calculation is more challenging than NAS due to the learning inefficiency caused by optimization requirements and the huge architecture space, and the performance loss when handling the wild data in various computing applications. To address these issues, we introduce operation space reduction and channel sampling into BNAS to significantly reduce the cost of searching. This is accomplished through a performance-based strategy that is robust to wild data, which is further used to abandon less potential operations. Furthermore, we introduce the Upper Confidence Bound (UCB) to solve 1-bit BNAS. Two optimization methods for binarized neural networks are used to validate the effectiveness of our BNAS. Extensive experiments demonstrate that the proposed BNAS achieves a comparable performance to NAS on both CIFAR and ImageNet databases. An accuracy of $96.53%$ vs. $97.22%$ is achieved on the CIFAR-10 dataset, but with a significantly compressed model, and a $40%$ faster search than the state-of-the-art PC-DARTS. On the wild face recognition task, our binarized models achieve a performance similar to their corresponding full-precision models.
Panoptic segmentation is posed as a new popular test-bed for the state-of-the-art holistic scene understanding methods with the requirement of simultaneously segmenting both foreground things and background stuff. The state-of-the-art panoptic segmentation network exhibits high structural complexity in different network components, i.e. backbone, proposal-based foreground branch, segmentation-based background branch, and feature fusion module across branches, which heavily relies on expert knowledge and tedious trials. In this work, we propose an efficient, cooperative and highly automated framework to simultaneously search for all main components including backbone, segmentation branches, and feature fusion module in a unified panoptic segmentation pipeline based on the prevailing one-shot Network Architecture Search (NAS) paradigm. Notably, we extend the common single-task NAS into the multi-component scenario by taking the advantage of the newly proposed intra-modular search space and problem-oriented inter-modular search space, which helps us to obtain an optimal network architecture that not only performs well in both instance segmentation and semantic segmentation tasks but also be aware of the reciprocal relations between foreground things and background stuff classes. To relieve the vast computation burden incurred by applying NAS to complicated network architectures, we present a novel path-priority greedy search policy to find a robust, transferrable architecture with significantly reduced searching overhead. Our searched architecture, namely Auto-Panoptic, achieves the new state-of-the-art on the challenging COCO and ADE20K benchmarks. Moreover, extensive experiments are conducted to demonstrate the effectiveness of path-priority policy and transferability of Auto-Panoptic across different datasets. Codes and models are available at: https://github.com/Jacobew/AutoPanoptic.
113 - Zihao Wang , Chen Lin , Lu Sheng 2020
Recently, deep learning has been utilized to solve video recognition problem due to its prominent representation ability. Deep neural networks for video tasks is highly customized and the design of such networks requires domain experts and costly trial and error tests. Recent advance in network architecture search has boosted the image recognition performance in a large margin. However, automatic designing of video recognition network is less explored. In this study, we propose a practical solution, namely Practical Video Neural Architecture Search (PV-NAS).Our PV-NAS can efficiently search across tremendous large scale of architectures in a novel spatial-temporal network search space using the gradient based search methods. To avoid sticking into sub-optimal solutions, we propose a novel learning rate scheduler to encourage sufficient network diversity of the searched models. Extensive empirical evaluations show that the proposed PV-NAS achieves state-of-the-art performance with much fewer computational resources. 1) Within light-weight models, our PV-NAS-L achieves 78.7% and 62.5% Top-1 accuracy on Kinetics-400 and Something-Something V2, which are better than previous state-of-the-art methods (i.e., TSM) with a large margin (4.6% and 3.4% on each dataset, respectively), and 2) among median-weight models, our PV-NAS-M achieves the best performance (also a new record)in the Something-Something V2 dataset.
218 - Xin Wei , Yifei Gong , Fudong Wang 2021
In this paper, we focus on recognizing 3D shapes from arbitrary views, i.e., arbitrary numbers and positions of viewpoints. It is a challenging and realistic setting for view-based 3D shape recognition. We propose a canonical view representation to tackle this challenge. We first transform the original features of arbitrary views to a fixed number of view features, dubbed canonical view representation, by aligning the arbitrary view features to a set of learnable reference view features using optimal transport. In this way, each 3D shape with arbitrary views is represented by a fixed number of canonical view features, which are further aggregated to generate a rich and robust 3D shape representation for shape recognition. We also propose a canonical view feature separation constraint to enforce that the view features in canonical view representation can be embedded into scattered points in a Euclidean space. Experiments on the ModelNet40, ScanObjectNN, and RGBD datasets show that our method achieves competitive results under the fixed viewpoint settings, and significantly outperforms the applicable methods under the arbitrary view setting.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا