Do you want to publish a course? Click here

Cascaded Recurrent Neural Networks for Hyperspectral Image Classification

116   0   0.0 ( 0 )
 Added by Renlong Hang
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

By considering the spectral signature as a sequence, recurrent neural networks (RNNs) have been successfully used to learn discriminative features from hyperspectral images (HSIs) recently. However, most of these models only input the whole spectral bands into RNNs directly, which may not fully explore the specific properties of HSIs. In this paper, we propose a cascaded RNN model using gated recurrent units (GRUs) to explore the redundant and complementary information of HSIs. It mainly consists of two RNN layers. The first RNN layer is used to eliminate redundant information between adjacent spectral bands, while the second RNN layer aims to learn the complementary information from non-adjacent spectral bands. To improve the discriminative ability of the learned features, we design two strategies for the proposed model. Besides, considering the rich spatial information contained in HSIs, we further extend the proposed model to its spectral-spatial counterpart by incorporating some convolutional layers. To test the effectiveness of our proposed models, we conduct experiments on two widely used HSIs. The experimental results show that our proposed models can achieve better results than the compared models.



rate research

Read More

The Recurrent Neural Networks and their variants have shown promising performances in sequence modeling tasks such as Natural Language Processing. These models, however, turn out to be impractical and difficult to train when exposed to very high-dimensional inputs due to the large input-to-hidden weight matrix. This may have prevented RNNs large-scale application in tasks that involve very high input dimensions such as video modeling; current approaches reduce the input dimensions using various feature extractors. To address this challenge, we propose a new, more general and efficient approach by factorizing the input-to-hidden weight matrix using Tensor-Train decomposition which is trained simultaneously with the weights themselves. We test our model on classification tasks using multiple real-world video datasets and achieve competitive performances with state-of-the-art models, even though our model architecture is orders of magnitude less complex. We believe that the proposed approach provides a novel and fundamental building block for modeling high-dimensional sequential data with RNN architectures and opens up many possibilities to transfer the expressive and advanced architectures from other domains such as NLP to modeling high-dimensional sequential data.
High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.
Hyperspectral images involve abundant spectral and spatial information, playing an irreplaceable role in land-cover classification. Recently, based on deep learning technologies, an increasing number of HSI classification approaches have been proposed, which demonstrate promising performance. However, previous studies suffer from two major drawbacks: 1) the architecture of most deep learning models is manually designed, relies on specialized knowledge, and is relatively tedious. Moreover, in HSI classifications, datasets captured by different sensors have different physical properties. Correspondingly, different models need to be designed for different datasets, which further increases the workload of designing architectures; 2) the mainstream framework is a patch-to-pixel framework. The overlap regions of patches of adjacent pixels are calculated repeatedly, which increases computational cost and time cost. Besides, the classification accuracy is sensitive to the patch size, which is artificially set based on extensive investigation experiments. To overcome the issues mentioned above, we firstly propose a 3D asymmetric neural network search algorithm and leverage it to automatically search for efficient architectures for HSI classifications. By analysing the characteristics of HSIs, we specifically build a 3D asymmetric decomposition search space, where spectral and spatial information are processed with different decomposition convolutions. Furthermore, we propose a new fast classification framework, i,e., pixel-to-pixel classification framework, which has no repetitive operations and reduces the overall cost. Experiments on three public HSI datasets captured by different sensors demonstrate the networks designed by our 3D-ANAS achieve competitive performance compared to several state-of-the-art methods, while having a much faster inference speed.
Deep learning methods have played a more and more important role in hyperspectral image classification. However, the general deep learning methods mainly take advantage of the information of sample itself or the pairwise information between samples while ignore the intrinsic data structure within the whole data. To tackle this problem, this work develops a novel deep manifold embedding method(DMEM) for hyperspectral image classification. First, each class in the image is modelled as a specific nonlinear manifold and the geodesic distance is used to measure the correlation between the samples. Then, based on the hierarchical clustering, the manifold structure of the data can be captured and each nonlinear data manifold can be divided into several sub-classes. Finally, considering the distribution of each sub-class and the correlation between different subclasses, the DMEM is constructed to preserve the estimated geodesic distances on the data manifold between the learned low dimensional features of different samples. Experiments over three real-world hyperspectral image datasets have demonstrated the effectiveness of the proposed method.
Accelerating the data acquisition of dynamic magnetic resonance imaging (MRI) leads to a challenging ill-posed inverse problem, which has received great interest from both the signal processing and machine learning community over the last decades. The key ingredient to the problem is how to exploit the temporal correlation of the MR sequence to resolve the aliasing artefact. Traditionally, such observation led to a formulation of a non-convex optimisation problem, which were solved using iterative algorithms. Recently, however, deep learning based-approaches have gained significant popularity due to its ability to solve general inversion problems. In this work, we propose a unique, novel convolutional recurrent neural network (CRNN) architecture which reconstructs high quality cardiac MR images from highly undersampled k-space data by jointly exploiting the dependencies of the temporal sequences as well as the iterative nature of the traditional optimisation algorithms. In particular, the proposed architecture embeds the structure of the traditional iterative algorithms, efficiently modelling the recurrence of the iterative reconstruction stages by using recurrent hidden connections over such iterations. In addition, spatiotemporal dependencies are simultaneously learnt by exploiting bidirectional recurrent hidden connections across time sequences. The proposed algorithm is able to learn both the temporal dependency and the iterative reconstruction process effectively with only a very small number of parameters, while outperforming current MR reconstruction methods in terms of computational complexity, reconstruction accuracy and speed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا