Do you want to publish a course? Click here

Proximity effects in spin-triplet superconductor-ferromagnet heterostucture with spin-active interface

112   0   0.0 ( 0 )
 Added by Damien Terrade
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the physical properties of a ballistic heterostructure made of a ferromagnet (FM) and a spin-triplet superconductor (TSC) with a layered structure stacking along the direction perpendicular to the planes where a chiral px+ipy pairing occurs and assuming spin dependent processes at the interface. We use a self-consistent Bogoliubov-de Gennes approach on a three-dimensional lattice to obtain the spatial profiles of the pairing amplitude and the magnetization. We find that, depending on the strength of the ferromagnetic exchange field, the ground state of the system can have two distinct configurations with a parallel or anti-parallel collinearity between the magnetic moments in the bulk and at the interface. We demonstrate that a magnetic state having non coplanar interface, bulk and Cooper pairs spins may be stabilized if the bulk magnetization is assumed to be fixed along a given direction. The study of the density of states reveals that the modification of the electronic spectrum in the FM plays an important role in the setting of the optimal magnetic configuration. Finally, we find the existence of induced spin-polarized pair correlations in the FM-TSC system.



rate research

Read More

We investigate inverse proximity effects in a spin-triplet superconductor (TSC) interfaced with a ferromagnet (FM), assuming different types of magnetic profiles and chiral or helical pairings. The region of the coexistence of spin-triplet superconductivity and magnetism is significantly influenced by the orientation and spatial extension of the magnetization with respect to the spin configuration of the Cooper pairs, resulting into clearcut anisotropy signatures. A characteristic mark of the inverse proximity effect arises in the induced spin-polarization at the TSC interface. This is unexpectedly stronger when the magnetic proximity is weaker, thus unveiling immediate detection signatures for spin-triplet pairs. We show that an anomalous magnetic proximity can occur at the interface between the itinerant ferromagnet, SrRuO$_3$, and the unconventional superconductor Sr$_2$RuO$_4$. Such scenario indicates the potential to design characteristic inverse proximity effects in experimentally available SrRuO$_3$-Sr$_2$RuO$_4$ heterostructures and to assess the occurrence of spin-triplet pairs in the highly debated superconducting phase of Sr$_2$RuO$_4$.
We have studied the proximity-induced superconducting triplet pairing in CoO$_x$/Py1/Cu/Py2/Cu/Pb spin-valve structure (where Py = Ni$_{0.81}$Fe$_{0.19}$). By optimizing the parameters of this structure we found a triplet channel assisted full switching between the normal and superconducting states. To observe an isolated triplet spin-valve effect we exploited the oscillatory feature of the magnitude of the ordinary spin-valve effect $Delta T_c$ in the dependence of the Py2-layer thickness $d_{Py2}$. We determined the value of $d_{Py2}$ at which $Delta T_c$ caused by the ordinary spin-valve effect (the difference in the superconducting transition temperature $T_c$ between the antiparallel and parallel mutual orientation of magnetizations of the Py1 and Py2 layers) is suppressed. For such a sample a pure triplet spin-valve effect which causes the minimum in $T_c$ at the orthogonal configuration of magnetizations has been observed.
The superconducting critical temperature $T_C$ of a superconductor/ferromagnet (S/F) bilayer with spin-flip scatterings at the interface is calculated as a function of the ferromagnet thickness $d_F$ in the dirty limit employing the Usadel equation. The appropriate boundary conditions from the spin-flip scatterings at the S/F interface are derived for the Usadel equation which includes the spin triplet pairing components as well as the spin singlet one. The spin-flip processes induce the spin triplet pairing components with s-wave in momentum and odd symmetry in frequency from the s-wave singlet order parameter $Delta$ of the superconductor region. The induced triplet components alter the singlet order parameter in the superconductor through boundary conditions at the interface and, consequently, change the $T_C$ of an S/F bilayer system. The calculated $T_C(d_F)$, like the case of no spin-flips, shows non-monotonic behavior which typically decreases as $d_F$ is increased from 0 and shows a shallow minimum and then saturates slowly as $d_F$ is further increased. It is well established that as the interface resistance (parameterized in terms of $gamma_b$) is increased, the $T_C$ is increased for a given $d_F$ and the non-monotonic feature in $T_C(d_F)$ is strongly suppressed. As the spin flip scattering (parameterized in terms of $gamma_m$) is increased, on the other hand, the $T_C$ is also increased for a given $d_F$, but the non-monotonic feature in $T_C(d_F)$ is less suppressed or even enhanced, through the formation of the spin triplet components.
We review the present status of the experimental and theoretical research on the proximity effect in heterostructures composed of superconducting (S) and ferromagnetic (F) thin films. First, we discuss traditional effects originating from the oscillatory behavior of the superconducting pair wave function in the F-layer. Then, we concentrate on recent theoretical predictions for S/F layer systems. These are a) generation of odd triplet superconductivity in the F-layer and b) ferromagnetism induced in the S-layer below the superconducting transition temperature $T_{c}$ (inverse proximity effect). The second part of the review is devoted to discussion of experiments relevant to the theoretical predictions of the first part. In particular, we present results of measurements of the critical temperature $T_{c}$ as a function of the thickness of F-layers and we review experiments indicating existence of odd triplet superconductivity, cryptoferromagnetism and inverse proximity effect.
We study a novel type of coupling between spin and orbital degrees of freedom which appears at triplet superconductor-ferromagnet interfaces. Using a self-consistent spatially-dependent mean-field theory, we show that increasing the angle between the ferromagnetic moment and the triplet vector order parameter enhances or suppresses the p-wave gap close to the interface, according as the gap antinodes are parallel or perpendicular to the boundary, respectively. The associated change in condensation energy establishes an orbitally-dependent preferred orientation for the magnetization. When both gap components are present, as in a chiral superconductor, we observe a first-order transition between different moment orientations as a function of the exchange field strength.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا