No Arabic abstract
There has been a steady need to precisely extract structured knowledge from the web (i.e. HTML documents). Given a web page, extracting a structured object along with various attributes of interest (e.g. price, publisher, author, and genre for a book) can facilitate a variety of downstream applications such as large-scale knowledge base construction, e-commerce product search, and personalized recommendation. Considering each web page is rendered from an HTML DOM tree, existing approaches formulate the problem as a DOM tree node tagging task. However, they either rely on computationally expensive visual feature engineering or are incapable of modeling the relationship among the tree nodes. In this paper, we propose a novel transferable method, Simplified DOM Trees for Attribute Extraction (SimpDOM), to tackle the problem by efficiently retrieving useful context for each node by leveraging the tree structure. We study two challenging experimental settings: (i) intra-vertical few-shot extraction, and (ii) cross-vertical fewshot extraction with out-of-domain knowledge, to evaluate our approach. Extensive experiments on the SWDE public dataset show that SimpDOM outperforms the state-of-the-art (SOTA) method by 1.44% on the F1 score. We also find that utilizing knowledge from a different vertical (cross-vertical extraction) is surprisingly useful and helps beat the SOTA by a further 1.37%.
Web Image Context Extraction (WICE) consists in obtaining the textual information describing an image using the content of the surrounding webpage. A common preprocessing step before performing WICE is to render the content of the webpage. When done at a large scale (e.g., for search engine indexation), it may become very computationally costly (up to several seconds per page). To avoid this cost, we introduce a novel WICE approach that combines Graph Neural Networks (GNNs) and Natural Language Processing models. Our method relies on a graph model containing both node types and text as features. The model is fed through several blocks of GNNs to extract the textual context. Since no labeled WICE dataset with ground truth exists, we train and evaluate the GNNs on a proxy task that consists in finding the semantically closest text to the image caption. We then interpret importance weights to find the most relevant text nodes and define them as the image context. Thanks to GNNs, our model is able to encode both structural and semantic information from the webpage. We show that our approach gives promising results to help address the large-scale WICE problem using only HTML data.
Attribute extrapolation in sample generation is challenging for deep neural networks operating beyond the training distribution. We formulate a new task for extrapolation in sequence generation, focusing on natural language and proteins, and propose GENhance, a generative framework that enhances attributes through a learned latent space. Trained on movie reviews and a computed protein stability dataset, GENhance can generate strongly-positive text reviews and highly stable protein sequences without being exposed to similar data during training. We release our benchmark tasks and models to contribute to the study of generative modeling extrapolation and data-driven design in biology and chemistry.
Understanding procedural text requires tracking entities, actions and effects as the narrative unfolds. We focus on the challenging real-world problem of action-graph extraction from material science papers, where language is highly specialized and data annotation is expensive and scarce. We propose a novel approach, Text2Quest, where procedural text is interpreted as instructions for an interactive game. A learning agent completes the game by executing the procedure correctly in a text-based simulated lab environment. The framework can complement existing approaches and enables richer forms of learning compared to static texts. We discuss potential limitations and advantages of the approach, and release a prototype proof-of-concept, hoping to encourage research in this direction.
Understanding product attributes plays an important role in improving online shopping experience for customers and serves as an integral part for constructing a product knowledge graph. Most existing methods focus on attribute extraction from text description or utilize visual information from product images such as shape and color. Compared to the inputs considered in prior works, a product image in fact contains more information, represented by a rich mixture of words and visual clues with a layout carefully designed to impress customers. This work proposes a more inclusive framework that fully utilizes these different modalities for attribute extraction. Inspired by recent works in visual question answering, we use a transformer based sequence to sequence model to fuse representations of product text, Optical Character Recognition (OCR) tokens and visual objects detected in the product image. The framework is further extended with the capability to extract attribute value across multiple product categories with a single model, by training the decoder to predict both product category and attribute value and conditioning its output on product category. The model provides a unified attribute extraction solution desirable at an e-commerce platform that offers numerous product categories with a diverse body of product attributes. We evaluated the model on two product attributes, one with many possible values and one with a small set of possible values, over 14 product categories and found the model could achieve 15% gain on the Recall and 10% gain on the F1 score compared to existing methods using text-only features.
Learning in environments with large state and action spaces, and sparse rewards, can hinder a Reinforcement Learning (RL) agents learning through trial-and-error. For instance, following natural language instructions on the Web (such as booking a flight ticket) leads to RL settings where input vocabulary and number of actionable elements on a page can grow very large. Even though recent approaches improve the success rate on relatively simple environments with the help of human demonstrations to guide the exploration, they still fail in environments where the set of possible instructions can reach millions. We approach the aforementioned problems from a different perspective and propose guided RL approaches that can generate unbounded amount of experience for an agent to learn from. Instead of learning from a complicated instruction with a large vocabulary, we decompose it into multiple sub-instructions and schedule a curriculum in which an agent is tasked with a gradually increasing subset of these relatively easier sub-instructions. In addition, when the expert demonstrations are not available, we propose a novel meta-learning framework that generates new instruction following tasks and trains the agent more effectively. We train DQN, deep reinforcement learning agent, with Q-value function approximated with a novel QWeb neural network architecture on these smaller, synthetic instructions. We evaluate the ability of our agent to generalize to new instructions on World of Bits benchmark, on forms with up to 100 elements, supporting 14 million possible instructions. The QWeb agent outperforms the baseline without using any human demonstration achieving 100% success rate on several difficult environments.