No Arabic abstract
Segmenting objects in videos is a fundamental computer vision task. The current deep learning based paradigm offers a powerful, but data-hungry solution. However, current datasets are limited by the cost and human effort of annotating object masks in videos. This effectively limits the performance and generalization capabilities of existing video segmentation methods. To address this issue, we explore weaker form of bounding box annotations. We introduce a method for generating segmentation masks from per-frame bounding box annotations in videos. To this end, we propose a spatio-temporal aggregation module that effectively mines consistencies in the object and background appearance across multiple frames. We use our resulting accurate masks for weakly supervised training of video object segmentation (VOS) networks. We generate segmentation masks for large scale tracking datasets, using only their bounding box annotations. The additional data provides substantially better generalization performance leading to state-of-the-art results in both the VOS and more challenging tracking domain.
Typical person re-identification frameworks search for k best matches in a gallery of images that are often collected in varying conditions. The gallery may contain image sequences when re-identification is done on videos. However, such a process is time consuming as re-identification has to be carried out multiple times. In this paper, we extract spatio-temporal sequences of frames (referred to as tubes) of moving persons and apply a multi-stage processing to match a given query tube with a gallery of stored tubes recorded through other cameras. Initially, we apply a binary classifier to remove noisy images from the input query tube. In the next step, we use a key-pose detection-based query minimization. This reduces the length of the query tube by removing redundant frames. Finally, a 3-stage hierarchical re-identification framework is used to rank the output tubes as per the matching scores. Experiments with publicly available video re-identification datasets reveal that our framework is better than state-of-the-art methods. It ranks the tubes with an increased CMC accuracy of 6-8% across multiple datasets. Also, our method significantly reduces the number of false positives. A new video re-identification dataset, named Tube-based Reidentification Video Dataset (TRiViD), has been prepared with an aim to help the re-identification research community
Existing methods for instance segmentation in videos typi-cally involve multi-stage pipelines that follow the tracking-by-detectionparadigm and model a video clip as a sequence of images. Multiple net-works are used to detect objects in individual frames, and then associatethese detections over time. Hence, these methods are often non-end-to-end trainable and highly tailored to specific tasks. In this paper, we pro-pose a different approach that is well-suited to a variety of tasks involvinginstance segmentation in videos. In particular, we model a video clip asa single 3D spatio-temporal volume, and propose a novel approach thatsegments and tracks instances across space and time in a single stage. Ourproblem formulation is centered around the idea of spatio-temporal em-beddings which are trained to cluster pixels belonging to a specific objectinstance over an entire video clip. To this end, we introduce (i) novel mix-ing functions that enhance the feature representation of spatio-temporalembeddings, and (ii) a single-stage, proposal-free network that can rea-son about temporal context. Our network is trained end-to-end to learnspatio-temporal embeddings as well as parameters required to clusterthese embeddings, thus simplifying inference. Our method achieves state-of-the-art results across multiple datasets and tasks. Code and modelsare available at https://github.com/sabarim/STEm-Seg.
We address the problem of video representation learning without human-annotated labels. While previous efforts address the problem by designing novel self-supervised tasks using video data, the learned features are merely on a frame-by-frame basis, which are not applicable to many video analytic tasks where spatio-temporal features are prevailing. In this paper we propose a novel self-supervised approach to learn spatio-temporal features for video representation. Inspired by the success of two-stream approaches in video classification, we propose to learn visual features by regressing both motion and appearance statistics along spatial and temporal dimensions, given only the input video data. Specifically, we extract statistical concepts (fast-motion region and the corresponding dominant direction, spatio-temporal color diversity, dominant color, etc.) from simple patterns in both spatial and temporal domains. Unlike prior puzzles that are even hard for humans to solve, the proposed approach is consistent with human inherent visual habits and therefore easy to answer. We conduct extensive experiments with C3D to validate the effectiveness of our proposed approach. The experiments show that our approach can significantly improve the performance of C3D when applied to video classification tasks. Code is available at https://github.com/laura-wang/video_repres_mas.
We focus on the task of generating sound from natural videos, and the sound should be both temporally and content-wise aligned with visual signals. This task is extremely challenging because some sounds generated emph{outside} a camera can not be inferred from video content. The model may be forced to learn an incorrect mapping between visual content and these irrelevant sounds. To address this challenge, we propose a framework named REGNET. In this framework, we first extract appearance and motion features from video frames to better distinguish the object that emits sound from complex background information. We then introduce an innovative audio forwarding regularizer that directly considers the real sound as input and outputs bottlenecked sound features. Using both visual and bottlenecked sound features for sound prediction during training provides stronger supervision for the sound prediction. The audio forwarding regularizer can control the irrelevant sound component and thus prevent the model from learning an incorrect mapping between video frames and sound emitted by the object that is out of the screen. During testing, the audio forwarding regularizer is removed to ensure that REGNET can produce purely aligned sound only from visual features. Extensive evaluations based on Amazon Mechanical Turk demonstrate that our method significantly improves both temporal and content-wise alignment. Remarkably, our generated sound can fool the human with a 68.12% success rate. Code and pre-trained models are publicly available at https://github.com/PeihaoChen/regnet
Generating videos from text is a challenging task due to its high computational requirements for training and infinite possible answers for evaluation. Existing works typically experiment on simple or small datasets, where the generalization ability is quite limited. In this work, we propose GODIVA, an open-domain text-to-video pretrained model that can generate videos from text in an auto-regressive manner using a three-dimensional sparse attention mechanism. We pretrain our model on Howto100M, a large-scale text-video dataset that contains more than 136 million text-video pairs. Experiments show that GODIVA not only can be fine-tuned on downstream video generation tasks, but also has a good zero-shot capability on unseen texts. We also propose a new metric called Relative Matching (RM) to automatically evaluate the video generation quality. Several challenges are listed and discussed as future work.