Do you want to publish a course? Click here

The physics of diamagnetic levitation

85   0   0.0 ( 0 )
 Added by Andreas Schilling
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We formulate a problem on diamagnetic levitation, which may be suitable for specialized high-school or first-year students in physical sciences. We guide the students, step-by-step, through the physics of diamagnetic levitation. The calculations are simplified by assuming a ring-shaped geometry of the diamagnetic object residing above a magnetic dipole. This problem was originally intended for the International Physics Olympiad 2016 (IPHO 2016), but was finally deemed surplus and therefore not set.



rate research

Read More

We describe and discuss an experimental set-up which allows undergraduate and graduate students to view and study magnetic levitation on a type-I superconductor. The demonstration can be repeated many times using one readily available 25 liter liquid helium dewar. We study the equilibrium position of a magnet that levitates over a lead bowl immersed in a liquid hand-held helium cryostat. We combine the measurement of the position of the magnet with simple analytical calculations. This provides a vivid visualization of magnetic levitation from the balance between pure flux expulsion and gravitation. The experiment contrasts and illustrates the case of magnetic levitation with high temperature type-II superconductors using liquid nitrogen, where levitation results from partial flux expulsion and vortex physics.
361 - Takehiro Azuma 2008
Recently in the authors country Japan, the unpopularity of natural science among children has been a serious problem. Especially, physics is unpopular because physics requires mathematics. One of the reasons of this problem is that teachers themselves do not like physics. We focus our attention on the ``teachers in embryo, namely the undergraduate students in a course for school teachers. We conducted a questionnaire and a quiz on the undergraduate students in the first grade of the Department of Science Education, Ibaraki University. We report the result of the questionnaire and the quiz, and also make suggestions to improve the present situation.
One desired outcome of introductory physics instruction is that students will develop facility with reasoning quantitatively about physical phenomena. Little research has been done regarding how students develop the algebraic concepts and skills involved in reasoning productively about physics quantities, which is different from either understanding of physics concepts or problem-solving abilities. We introduce the Physics Inventory of Quantitative Literacy (PIQL) as a tool for measuring quantitative literacy, a foundation of mathematical reasoning, in the context of introductory physics. We present the development of the PIQL and evidence of its validity for use in calculus-based introductory physics courses. Unlike concept inventories, the PIQL is a reasoning inventory, and can be used to assess reasoning over the span of students instruction in introductory physics. Although mathematical reasoning associated with the PIQL is taught in prior mathematics courses, pre/post test scores reveal that this reasoning isnt readily used by most students in physics, nor does it develop as part of physics instruction--even in courses that use high-quality, research-based curricular materials. As has been the case with many inventories in physics education, we expect use of the PIQL to support the development of instructional strategies and materials--in this case, designed to meet the course objective that all students become quantitatively literate in introductory physics.
Graduate Teaching Assistants (GTAs) are key partners in the education of undergraduates. Given the potentially large impact GTAs can have on undergraduate student learning, it is important to provide them with appropriate preparation for teaching. But GTAs are students themselves, and not all of them desire to pursue an academic career. Fully integrating GTA preparation into the professional development of graduate students lowers the barrier to engagement so that all graduate students may benefit from the opportunity to explore teaching and its applications to many potential career paths. In this paper we describe the design and implementation of a GTA Preparation course for first-year Ph.D. students at the Georgia Tech School of Physics. Through a yearly cycle of implementation and revision, guided by the 3P Framework we developed (Pedagogy, Physics, Professional Development), the course has evolved into a robust and comprehensive professional development program that is well-received by physics graduate students.
Most STEM students experience the introductory physics sequence in large-enrollment (N $gtrsim$ 100 students) classrooms, led by one lecturer and supported by a few teaching assistants. This work describes methods and principles we used to create an effective flipped classroom in large- enrollment introductory physics courses by replacing a majority of traditional lecture time with in-class student-driven activity worksheets. In this work, we compare student learning in courses taught by the authors with the flipped classroom pedagogy versus a more traditional pedagogy. By comparing identical questions on exams, we find significant learning gains for students in the student-centered flipped classroom compared to students in the lecturer-centered traditional classroom. Furthermore, we find that the gender gap typically seen in the introductory physics sequence is significantly reduced in the flipped classroom.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا