No Arabic abstract
We report on the low-energy dynamics in the kagome antiferromagnet CaCu$_3$(OD)$_6$Cl$_2cdot0.6$D$_2$O (Ca-kapellasite) as studied by use of $^2$D-NMR measurements. Previous $^{35}$Cl-NMR measurements revealed that the nuclear spin-lattice relaxation rate ($1/T_1$) shows two peaks at temperatures, $T^{ast} = 7.2$ K and $T_s simeq 25$ K. While the low-temperature peak at $T^{ast}$ is ascribed to the critical fluctuations near the long-range magnetic ordering, the origin of the high-temperature peak has not been fully understood. From the $1/T_1$ measurements on the D sites at the OD groups (D$_{rm OD}$), we find no peak at $T_s$, evidencing that the high-temperature peak is not related to the molecular dynamics of the OD groups. We discuss the possibility of a frustration-induced short-range ordered state below $T_s$ before the long-range order is stabilized by the Dzyaloshinskii-Moriya interaction. We also observed static internal fields at the D$_{rm OD}$ site in the long-range ordered state below $T^{ast}$, and confirm the previously proposed negative-chirality $q=0$ magnetic structure.
Crystal and magnetic structures of the mineral centennialite CaCu$_3$(OH)$_6$Cl$_2cdot0.6$H$_2$O are investigated by means of synchrotron x-ray diffraction and neutron diffraction measurements complemented by density functional theory (DFT) and pseudofermion functional renormalization group (PFFRG) calculations. CaCu$_3$(OH)$_6$Cl$_2cdot0.6$H$_2$O crystallizes in the $Pbar{3}m1$ space group and Cu$^{2+}$ ions form a geometrically perfect kagome network with antiferromagnetic $J_1$. No intersite disorder between Cu$^{2+}$ and Ca$^{2+}$ ions is detected. CaCu$_3$(OH)$_6$Cl$_2cdot0.6$H$_2$O enters a magnetic long-range ordered state below $T_text{N}=7.2$~K, and the $mathbf{q}=mathbf{0}$ magnetic structure with negative vector spin chirality is obtained. The ordered moment at 0.3~K is suppressed to $0.58(2)mu_text{B}$. Our DFT calculations indicate the presence of antiferromagnetic $J_2$ and ferromagnetic $J_d$ superexchange couplings of a strength which places the system at the crossroads of three magnetic orders (at the classical level) and a spin-$frac{1}{2}$ PFFRG analysis shows a dominance of $mathbf{q}=mathbf{0}$ type magnetic correlations, consistent with and indicating proximity to the observed $mathbf{q}=mathbf{0}$ spin structure. The results suggest that this material is located close to a quantum critical point and is a good realization of a $J_1$-$J_2$-$J_d$ kagome antiferromagnet.
Recently, several putative quantum spin liquid (QSL) states were discovered in ${tilde S} = 1/2$ rare-earth based triangular-lattice antiferromagnets (TLAF) with the delafossite structure. A way to clarify the origin of the QSL state in these systems is to identify ways to tune them from the putative QSL state towards long-range magnetic order. Here, we introduce the Ce-based TLAF KCeS$_2$ and show via low-temperature specific heat and $mu$SR investigations that it yields magnetic order below $T_{mathrm N} = 0.38$ K despite the same delafossite structure. We identify a well separated ${tilde S} = 1/2$ ground state for KCeS$_2$ from inelastic neutron scattering and embedded-cluster quantum chemical calculations. Magnetization and electron spin resonance measurements on single crystals indicate a strong easy-plane $g$~factor anisotropy, in agreement with the ab initio calculations. Finally, our specific-heat studies reveal an in-plane anisotropy of the magnetic field-temperature phase diagram which may indicate anisotropic magnetic interactions in KCeS$_2$.
PbFe$_{1/2}$Ta$_{1/2}$O$_{3}$ (PFT) belongs to the family of PbB$_{x}$B$_{1-x}$O$_{3}$ which have inherent chemical disorder at the B-site. Due to this disorder, a complex magnetic phase diagram is expected in the material. In this paper, we report experimental results of magnetic properties in PFT through macroscopic characterization, neutron scattering and M{o}ssbauer spectroscopy techniques. With these results we show for the first time that PbFe$_{1/2}$Ta$_{1/2}$O$_{3}$ behaves very similar to PbFe$_{1/2}$Nb$_{1/2}$O$_{3}$, i.e, it undergoes AF transition at 153 K and has a spinglass transition at 10 K, below which the antiferromagnetism coexists with spinglass. We suggest that the mechanism which is responsible for such a non-trivial ground state can be explained by a speromagnet-like spin arrangement similar to the one proposed for PbFe$_{1/2}$Nb$_{1/2}$O$_{3}$.
Er$_2$Sn$_2$O$_7$ remains a puzzling case among the extensively studied frustrated compounds of the rare-earth pyrochlore family. Indeed, while a first order transition towards a long-range antiferromagnetic state with the so-called Palmer-Chalker structure is theoretically predicted, it has not been observed yet, leaving the issue, as to whether it is a spin-liquid candidate, open. We report on neutron scattering and magnetization measurements which evidence a second order transition towards this Palmer-Chalker ordered state around 108 mK. Extreme care was taken to ensure a proper thermalization of the sample, which has proved to be crucial to successfully observe the magnetic Bragg peaks. At the transition, a gap opens in the excitations, superimposed on a strong quasielastic signal. The exchange parameters, refined from a spin wave analysis in applied magnetic field, confirm that Er$_2$Sn$_2$O$_7$ is a realization of the dipolar XY pyrochlore antiferromagnet. The proximity of competing phases and the strong XY anisotropy of the Er$^{3+}$ magnetic moment might be at the origin of enhanced fluctuations, leading to the unexpected nature of the transition, the low ordering temperature, and the observed multi-scale dynamics.
In this study, we performed powder neutron diffraction and inelastic scattering measurements of frustrated pyrochlore Nd$_2$Ir$_2$O$_7$, which exhibits a metal-insulator transition at a temperature $T_{rm MI}$ of 33 K. The diffraction measurements revealed that the pyrochlore has an antiferromagnetic long-range structure with propagation vector $vec{q}_{0}$ of (0,0,0) and that it grows with decreasing temperature below 15 K. This structure was analyzed to be of the all-in all-out type, consisting of highly anisotropic Nd$^{3+}$ magnetic moments of magnitude $2.3pm0.4$$mu_{rm B}$, where $mu_{rm B}$ is the Bohr magneton. The inelastic scattering measurements revealed that the Kramers ground doublet of Nd$^{3+}$ splits below $T_{rm MI}$. This suggests the appearance of a static internal magnetic field at the Nd sites, which probably originates from a magnetic order consisting of Ir$^{4+}$ magnetic moments. Here, we discuss a magnetic structure model for the Ir order and the relation of the order to the metal-insulator transition in terms of frustration.