Do you want to publish a course? Click here

Emergence of magnetic long-range order in frustrated pyrochlore Nd$_2$Ir$_2$O$_7$ with metal-insulator transition

135   0   0.0 ( 0 )
 Added by Keisuke Tomiyasu
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this study, we performed powder neutron diffraction and inelastic scattering measurements of frustrated pyrochlore Nd$_2$Ir$_2$O$_7$, which exhibits a metal-insulator transition at a temperature $T_{rm MI}$ of 33 K. The diffraction measurements revealed that the pyrochlore has an antiferromagnetic long-range structure with propagation vector $vec{q}_{0}$ of (0,0,0) and that it grows with decreasing temperature below 15 K. This structure was analyzed to be of the all-in all-out type, consisting of highly anisotropic Nd$^{3+}$ magnetic moments of magnitude $2.3pm0.4$$mu_{rm B}$, where $mu_{rm B}$ is the Bohr magneton. The inelastic scattering measurements revealed that the Kramers ground doublet of Nd$^{3+}$ splits below $T_{rm MI}$. This suggests the appearance of a static internal magnetic field at the Nd sites, which probably originates from a magnetic order consisting of Ir$^{4+}$ magnetic moments. Here, we discuss a magnetic structure model for the Ir order and the relation of the order to the metal-insulator transition in terms of frustration.



rate research

Read More

We have studied the effect of pressure on the pyrochlore iridate Eu$_2$Ir$_2$O$_7$, which at ambient pressure has a thermally driven insulator to metal transition at $T_{MI}sim120$,K. As a function of pressure the insulating gap closes, apparently continuously, near $P sim 6$,GPa. However, rather than $T_{MI}$ going to zero as expected, the insulating ground state crosses over to a metallic state with a negative temperature coefficient of resistivity, calling into question the true nature of both ground states. The high temperature state also crosses over near 6 GPa, from an incoherent to a conventional metal, suggesting a connection between the high and the low temperature states.
We report on the evolution of the thermal metal-insulator transition in polycrystalline samples of Nd$_2$Ir$_2$O$_7$ upon hole-doping via substitution of Ca$^{2+}$ for Nd$^{3+}$. Ca substitution mediates a filling-controlled Mott-like transition with minimal resolvable structural changes and without altering site symmetry. Local structure confirms that Ca substitution does not result in local chemical phase separation, and absorption spectroscopy establishes that Ir cations maintain a spin-orbit entangled electronic configuration. The metal-insulator transition coincides with antiferromagnetic ordering on the Ir sublattice for all measured samples, and both decrease in onset temperature with Ca content. Weak low-temperature upturns in susceptibility and resistivity for samples with high Ca content suggest that Nd sublattice antiferromagnetism continues to couple to carriers in the metallic regime.
224 - S. Petit , E. Lhotel , F. Damay 2017
Er$_2$Sn$_2$O$_7$ remains a puzzling case among the extensively studied frustrated compounds of the rare-earth pyrochlore family. Indeed, while a first order transition towards a long-range antiferromagnetic state with the so-called Palmer-Chalker structure is theoretically predicted, it has not been observed yet, leaving the issue, as to whether it is a spin-liquid candidate, open. We report on neutron scattering and magnetization measurements which evidence a second order transition towards this Palmer-Chalker ordered state around 108 mK. Extreme care was taken to ensure a proper thermalization of the sample, which has proved to be crucial to successfully observe the magnetic Bragg peaks. At the transition, a gap opens in the excitations, superimposed on a strong quasielastic signal. The exchange parameters, refined from a spin wave analysis in applied magnetic field, confirm that Er$_2$Sn$_2$O$_7$ is a realization of the dipolar XY pyrochlore antiferromagnet. The proximity of competing phases and the strong XY anisotropy of the Er$^{3+}$ magnetic moment might be at the origin of enhanced fluctuations, leading to the unexpected nature of the transition, the low ordering temperature, and the observed multi-scale dynamics.
We report the observation of a linear magnetoresistance in single crystals and epitaxial thin films of the pyrochlore iridate Bi$_2$Ir$_2$O$_7$. The linear magnetoresistance is positive and isotropic at low temperatures, without any sign of saturation up to 35 Tesla. As temperature increases, the linear field dependence gradually evolves to a quadratic field dependence. The temperature and field dependence of magnetoresistance of Bi$_2$Ir$_2$O$_7$ bears strikingly resemblance to the scale invariant magnetoresistance observed in the strange metal phase in high Tc cuprates. However, the residual resistivity of Bi$_2$Ir$_2$O$_7$ is more than two orders of magnitude higher than the curpates. Our results suggest that the correlation between linear magnetoresistance and quantum fluctuations may exist beyond high temperature superconductors.
The influence of a staggered molecular field in frustrated rare-earth pyrochlores, produced via the magnetic iridium occupying the transition metal site, can generate exotic ground states, such as the fragmentation of the magnetization in the Ho compound. At variance with the Ising Ho$^{3+}$ moment, we focus on the behavior of the quasi isotropic magnetic moment of the Gd$^{3+}$ ion at the rare-earth site. By means of macroscopic measurements and neutron scattering, we find a complex situation where different components of the magnetic moment contribute to two antiferromagnetic non-collinear arrangements: a high temperature all in - all out order induced by the Ir molecular field, and Palmer and Chalker correlations that tend to order at much lower temperatures. This is enabled by the anisotropic nature of the Gd-Gd interactions and requires a weak easy-plane anisotropy of the Gd$^{3+}$ moment due to the mixing of the ground state with multiplets of higher spectral terms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا