No Arabic abstract
We have learned to live with many potentially deadly viruses for which there is no vaccine, no immunity, and no cure. We do not live in constant fear of these viruses, instead, we have learned how to outsmart them and reduce the harm they cause. A new mathematical model that combines the spread of diseases that do not confer immunity together with the evolution of human behaviors indicates that we may be able to fight new diseases with the same type of strategy we use to fight viruses like HIV.
Objectives.--To estimate the basic reproduction number of the Wuhan novel coronavirus (2019-nCoV). Methods.--Based on the susceptible-exposed-infected-removed (SEIR) compartment model and the assumption that the infectious cases with symptoms occurred before January 25, 2020 are resulted from free propagation without intervention, we estimate the basic reproduction number of 2019-nCoV according to the reported confirmed cases and suspected cases, as well as the theoretical estimated number of infected cases by other research teams, together with some epidemiological determinants learned from the severe acute respiratory syndrome. Results The basic reproduction number falls between 2.8 to 3.3 by using the real-time reports on the number of 2019-nCoV infected cases from Peoples Daily in China, and falls between 3.2 and 3.9 on the basis of the predicted number of infected cases from colleagues. Conclusions.--The early transmission ability of 2019-nCoV is closed to or slightly higher than SARS. It is a controllable disease with moderate-high transmissibility. Timely and effective control measures are needed to suppress the further transmissions. Notes Added.--Using a newly reported epidemiological determinants for early 2019-nCoV, the estimated basic reproduction number is in the range [2.2,3.0].
In this paper, we investigate a novel 3-compartment model of HIV infection of CD4$^+$ T-cells with a mass action term by including t
We propose a novel testing and containment strategy in order to contain the spread of SARS-CoV2 while permitting large parts of the population to resume social and economic activity. Our approach recognises the fact that testing capacities are severely constrained in many countries. In this setting, we show that finding the best way to utilise this limited number of tests during a pandemic can be formulated concisely as an allocation problem. Our problem formulation takes into account the heterogeneity of the population and uses pooled testing to identify and isolate individuals while prioritising key workers and individuals with a higher risk of spreading the disease. In order to demonstrate the efficacy of our testing and containment mechanism, we perform simulations using a network-based SIR model. Our simulations indicate that applying our mechanism on a population of $100,000$ individuals with only $16$ tests per day reduces the peak number of infected individuals by approximately $20%$, when compared to the scenario where no intervention is implemented.
The use of CVA to cover credit risk is widely spread, but has its limitations. Namely, dealers face the problem of the illiquidity of instruments used for hedging it, hence forced to warehouse credit risk. As a result, dealers tend to offer a limited OTC derivatives market to highly risky counterparties. Consequently, those highly risky entities rarely have access to hedging services precisely when they need them most. In this paper we propose a method to overcome this limitation. We propose to extend the CVA risk-neutral framework to compute an initial margin (IM) specific to each counterparty, which depends on the credit quality of the entity at stake, transforming the effective credit rating of a given netting set to AAA, regardless of the credit rating of the counterparty. By transforming CVA requirement into IM ones, as proposed in this paper, an institution could rely on the existing mechanisms for posting and calling of IM, hence ensuring the operational viability of this new form of managing warehoused risk. The main difference with the currently standard framework is the creation of a Specific Initial Margin, that depends in the credit rating of the counterparty and the characteristics of the netting set in question. In this paper we propose a methodology for such transformation in a sound manner, and hence this method overcomes some of the limitations of the CVA framework.
We propose a mathematical model to analyze the time evolution of the total number of infected population with Covid-19 disease at a region in the ongoing pandemic. Using the available data of Covid-19 infected population on various countries we formulate a model which can successfully track the time evolution from early days to the saturation period in a given wave of this infectious disease. It involves a set of effective parameters which can be extracted from the available data. Using those parameters the future trajectories of the disease spread can also be projected. A set of differential equations is also proposed whose solutions are these time evolution trajectories. Using such a formalism we project the future time evolution trajectories of infection spread for a number of countries where the Covid-19 infection is still rapidly rising.