Do you want to publish a course? Click here

Preliminary prediction of the basic reproduction number of the Wuhan novel coronavirus 2019-nCoV

135   0   0.0 ( 0 )
 Added by Tao Zhou
 Publication date 2020
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

Objectives.--To estimate the basic reproduction number of the Wuhan novel coronavirus (2019-nCoV). Methods.--Based on the susceptible-exposed-infected-removed (SEIR) compartment model and the assumption that the infectious cases with symptoms occurred before January 25, 2020 are resulted from free propagation without intervention, we estimate the basic reproduction number of 2019-nCoV according to the reported confirmed cases and suspected cases, as well as the theoretical estimated number of infected cases by other research teams, together with some epidemiological determinants learned from the severe acute respiratory syndrome. Results The basic reproduction number falls between 2.8 to 3.3 by using the real-time reports on the number of 2019-nCoV infected cases from Peoples Daily in China, and falls between 3.2 and 3.9 on the basis of the predicted number of infected cases from colleagues. Conclusions.--The early transmission ability of 2019-nCoV is closed to or slightly higher than SARS. It is a controllable disease with moderate-high transmissibility. Timely and effective control measures are needed to suppress the further transmissions. Notes Added.--Using a newly reported epidemiological determinants for early 2019-nCoV, the estimated basic reproduction number is in the range [2.2,3.0].



rate research

Read More

An urgent problem in controlling COVID-19 spreading is to understand the role of undocumented infection. We develop a five-state model for COVID-19, taking into account the unique features of the novel coronavirus, with key parameters determined by the government reports and mathematical optimization. Tests using data from China, South Korea, Italy, and Iran indicate that the model is capable of generating accurate prediction of the daily accumulated number of confirmed cases and is entirely suitable for real-time prediction. The drastically disparate testing and diagnostic standards/policies among different countries lead to large variations in the estimated parameter values such as the duration of the outbreak, but such uncertainties have little effect on the occurrence time of the inflection point as predicted by the model, indicating its reliability and robustness. Model prediction for Italy suggests that insufficient government action leading to a large fraction of undocumented infection plays an important role in the abnormally high mortality in that country. With the data currently available from United Kingdom, our model predicts catastrophic epidemic scenarios in the country if the government did not impose strict travel and social distancing restrictions. A key finding is that, if the percentage of undocumented infection exceeds a threshold, a non-negligible hidden population can exist even after the the epidemic has been deemed over, implying the likelihood of future outbreaks should the currently imposed strict government actions be relaxed. This could make COVID-19 evolving into a long-term epidemic or a community disease a real possibility, suggesting the necessity to conduct universal testing and monitoring to identify the hidden individuals.
Since the SARS outbreak in 2003, a lot of predictive epidemiological models have been proposed. At the end of 2019, a novel coronavirus, termed as 2019-nCoV, has broken out and is propagating in China and the world. Here we propose a multi-model ordinary differential equation set neural network (MMODEs-NN) and model-free methods to predict the interprovincial transmissions in mainland China, especially those from Hubei Province. Compared with the previously proposed epidemiological models, the proposed network can simulate the transportations with the ODEs activation method, while the model-free methods based on the sigmoid function, Gaussian function, and Poisson distribution are linear and fast to generate reasonable predictions. According to the numerical experiments and the realities, the special policies for controlling the disease are successful in some provinces, and the transmission of the epidemic, whose outbreak time is close to the beginning of China Spring Festival travel rush, is more likely to decelerate before February 18 and to end before April 2020. The proposed mathematical and artificial intelligence methods can give consistent and reasonable predictions of the 2019-nCoV ending. We anticipate our work to be a starting point for comprehensive prediction researches of the 2019-nCoV.
565 - Markus J. Buehler 2020
Proteins are key building blocks of virtually all life, providing the material foundation of spider silk, cells, and hair, but also offering other functions from enzymes to drugs, and pathogens like viruses. Based on a nanomechanical analysis of the structure and motions of atoms and molecules at multiple scales, we report sonifi
The basic reproduction number $R_0$ is a fundamental quantity in epidemiological modeling, reflecting the typical number of secondary infections that arise from a single infected individual. While $R_0$ is widely known to scientists, policymakers, and the general public, it has received comparatively little attention in the controls community. This note provides two novel characterizations of $R_0$: a stability characterization and a geometric program characterization. The geometric program characterization allows us to write $R_0$-constrained and budget-constrained optimal resource allocation problems as geometric programs, which are easily transformed into convex optimization problems. We apply these programs to a case study of allocating vaccines and antidotes, finding that targeting $R_0$ instead of the spectral abscissa of the Jacobian matrix (a common target in the controls literature) leads to qualitatively different solutions.
Background: Wuhan, China was the epicenter of COVID-19 pandemic. The goal of current study is to understand the infection transmission dynamics before intervention measures were taken. Methods: Data and key events were searched through pubmed and internet. Epidemiological data were calculated using data extracted from a variety of data sources. Results: We established a timeline showing by January 1, 2020, Chinese authorities had been presented convincing evidence of human-to-human transmission; however, it was not until January 20, 2020 that this information was shared with the public. Our study estimated that there would have been 10989 total infected cases if interventions were taken on January 2, 2020, versus 239875 cases when lockdown was put in place on January 23, 2020. Conclusions: Chinas withholding of key information about the 2020 COVID-19 outbreak and its delayed response ultimately led to the largest public health crisis of this century and could have been avoided with earlier countermeasures.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا