Because the production cross sections of gamma-rays, electrons, and positrons made in p-p collisions, $sigma_{pprightarrow gamma}$ and $sigma_{pprightarrow {e}^pm}$, respectively, are kinematically equivalent with respect to the parent pion-production cross section $sigma_{pprightarrow pi}$, we obtain $sigma_{pprightarrow {e}^pm}$ directly from the machine data on $sigma_{pprightarrow gamma}$. In Sato et al. (2012), we give explicitly $sigma_{pprightarrow gamma}$, reproducing quite well the accelerator data with LHC, namely $sigma_{pprightarrow {e}^pm}$ is applicable enough over the wide energy range from GeV to 20,PeV for projectile proton energy. We dicuss in detail the relation between the cross sections, and present explicitly $sigma_{pprightarrow {e}^pm}$ that are valid into the PeV electron energy.
The standard model of cosmic ray propagation has been very successful in explaining all kinds of the Galactic cosmic ray spectra. However, high precision measurement recently revealed the appreciable discrepancy between data and model expectation, from spectrum observations of $gamma$-rays, $e^+/e^-$ and probably the $B/C$ ratio starting from $sim$10 GeV energy. In this work, we propose that the fresh cosmic rays, which are supplied by the young accelerators and detained by local magnetic field, can contribute additional secondary particles interacting with local materials. As this early cosmic ray has a hard spectrum, the model calculation results in a two-component $gamma$-ray spectrum, which agree very well with the observation. Simultaneously, the expected neutrino number from the galactic plane could contribute $sim60%$ of IceCube observation neutrino number below a few hundreds of TeV. The same pp-collision process can account for a significant amount of the positron excesses. Under this model, it is expected that the excesses in $overline p/p$ and $B/C$ ratio will show up when energy is above $sim$10 GeV. We look forward that the model will be tested in the near future by new observations from AMS02, IceCube, AS$gamma$, HAWC and future experiments such as LHASSO, HiSCORE and CTA.
The measured fluxes of secondary particles produced by the interactions of Cosmic Rays (CRs) with the astronomical environment play a crucial role in understanding the physics of CR transport. In this work we present a comprehensive calculation of the secondary hadron, lepton, gamma-ray and neutrino yields produced by the inelastic interactions between several species of stable or long-lived cosmic rays projectiles (p, D, T, 3He, 4He, 6Li, 7Li, 9Be, 10Be, 10B, 11B, 12C, 13C, 14C, 14N, 15N, 16O, 17O, 18O, 20Ne, 24Mg and 28Si) and different target gas nuclei (p, 4He, 12C, 14N, 16O, 20Ne, 24Mg, 28Si and 40Ar). The yields are calculated using FLUKA, a simulation package designed to compute the energy distributions of secondary products with large accuracy in a wide energy range. The present results provide, for the first time, a complete and self-consistent set of all the relevant inclusive cross sections regarding the whole spectrum of secondary products in nuclear collisions. We cover, for the projectiles, a kinetic energy range extending from $0.1 GeV/n$ up to $100 TeV/n$ in the lab frame. In order to show the importance of our results for multi-messenger studies about the physics of CR propagation, we evaluate the propagated spectra of Galactic secondary nuclei, leptons, and gamma rays produced by the interactions of CRs with the insterstellar gas, exploiting the numerical codes DRAGON and GammaSky. We show that, adopting our cross section database, we are able to provide a good fit of a complete sample of CR observables, including: leptonic and hadronic spectra measured at Earth, the local interstellar spectra measured by Voyager, and the gamma-ray emissivities from Fermi-LAT collaboration. We also show a set of gamma-ray and neutrino full-sky maps and spectra.
The NUCLEON space observatory is a direct cosmic ray spectrometer designed to study cosmic ray nuclei with $Z=1-30$ at energies $10^{12}-10^{15}$ eV. It was launched as an additional payload onboard the Russian Resource-P No. 2 satellite. In this work B/C, N/O and subFe/Fe ratios are presented. The experiment has worked for half of its expected time, so the data have preliminary status, but they already give clear indications of several astrophysical phenomena, which are briefly discussed in this paper.