Do you want to publish a course? Click here

WiMesh: Leveraging Mesh Networking For Disaster Communication in Poor Regions of the World

363   0   0.0 ( 0 )
 Added by Junaid Qadir
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper discusses the design, implementation and field trials of WiMesh - a resilient Wireless Mesh Network (WMN) based disaster communication system purpose-built for underdeveloped and rural parts of the world. Mesh networking is a mature area, and the focus of this paper is not on proposing novel models, protocols or other mesh solutions. Instead, the paper focuses on the identification of important design considerations and justifications for several design trade offs in the context of mesh networking for disaster communication in developing countries with very limited resources. These trade-offs are discussed in the context of key desirable traits including security, low cost, low power, size, availability, customization, portability, ease of installation and deployment, and coverage area among others. We discuss at length the design, implementation, and field trial results of the WiMesh system which enables users spread over large geographical regions, to communicate with each other despite the lack of cellular coverage, power, and other communication infrastructure by leveraging multi-hop mesh networking and Wi-Fi equipped handheld devices. Lessons learned along with real-world results are shared for WiMesh deployment in a remote rural mountainous village of Pakistan, and the source code is shared with the research community.



rate research

Read More

The 4G Long Term Evolution (LTE) is the cellular technology expected to outperform the previous generations and to some extent revolutionize the experience of the users by taking advantage of the most advanced radio access techniques (i.e. OFDMA, SC-FDMA, MIMO). However, the strong dependencies between user equipments (UEs), base stations (eNBs) and the Evolved Packet Core (EPC) limit the flexibility, manageability and resiliency in such networks. In case the communication links between UEs-eNB or eNB-EPC are disrupted, UEs are in fact unable to communicate. In this article, we reshape the 4G mobile network to move towards more virtual and distributed architectures for improving disaster resilience, drastically reducing the dependency between UEs, eNBs and EPC. The contribution of this work is twofold. We firstly present the Flexible Management Entity (FME), a distributed entity which leverages on virtualized EPC functionalities in 4G cellular systems. Second, we introduce a simple and novel device-todevice (D2D) communication scheme allowing the UEs in physical proximity to communicate directly without resorting to the coordination with an eNB.
The fifth-generation (5G) communication systems will enable enhanced mobile broadband, ultra-reliable low latency, and massive connectivity services. The broadband and low-latency services are indispensable to public safety (PS) communication during natural or man-made disasters. Recently, the third generation partnership project long term evolution (3GPPLTE) has emerged as a promising candidate to enable broadband PS communications. In this article, first we present six major PS-LTE enabling services and the current status of PS-LTE in 3GPP releases. Then, we discuss the spectrum bands allocated for PS-LTE in major countries by international telecommunication union (ITU). Finally, we propose a disaster resilient three-layered architecture for PS-LTE (DR-PSLTE). This architecture consists of a software-defined network (SDN) layer to provide centralized control, an unmanned air vehicle (UAV) cloudlet layer to facilitate edge computing or to enable emergency communication link, and a radio access layer. The proposed architecture is flexible and combines the benefits of SDNs and edge computing to efficiently meet the delay requirements of various PS-LTE services. Numerical results verified that under the proposed DR-PSLTE architecture, delay is reduced by 20% as compared with the conventional centralized computing architecture.
Disasters are constant threats to humankind, and beyond losses in lives, they cause many implicit yet profound societal issues such as wealth disparity and digital divide. Among those recovery measures in the aftermath of disasters, restoring and improving communication services is of vital importance. Although existing works have proposed many architectural and protocol designs, none of them have taken human factors and social equality into consideration. Recent sociological studies have shown that people from marginalized groups (e.g., minority, low income, and poor education) are more vulnerable to communication outages. In this work, we take pioneering efforts in integrating human factors into an empirical optimization model to determine strategies for post-disaster communication restoration. We cast the design into a mix-integer non-linear programming problem, which is proven too complex to be solved. Through a suite of convex relaxations, we then develop heuristic algorithms to efficiently solve the transformed optimization problem. Based on a collected dataset, we further evaluate and demonstrate how our design will prioritize communication services for vulnerable people and promote social equality compared with an existing modeling benchmark.
The damage to cellular towers during natural and man-made disasters can disturb the communication services for cellular users. One solution to the problem is using unmanned aerial vehicles to augment the desired communication network. The paper demonstrates the design of a UAV-Assisted Imitation Learning (UnVAIL) communication system that relays the cellular users information to a neighbor base station. Since the user equipment (UEs) are equipped with buffers with limited capacity to hold packets, UnVAIL alternates between different UEs to reduce the chance of buffer overflow, positions itself optimally close to the selected UE to reduce service time, and uncovers a network pathway by acting as a relay node. UnVAIL utilizes Imitation Learning (IL) as a data-driven behavioral cloning approach to accomplish an optimal scheduling solution. Results demonstrate that UnVAIL performs similar to a human expert knowledge-based planning in communication timeliness, position accuracy, and energy consumption with an accuracy of 97.52% when evaluated on a developed simulator to train the UAV.
The Internet of Things (IoT) is rapidly evolving based on low-power compliant protocol standards that extend the Internet into the embedded world. Pioneering implementations have proven it is feasible to inter-network very constrained devices, but had to rely on peculiar cross-layered designs and offer a minimalistic set of features. In the long run, however, professional use and massive deployment of IoT devices require full-featured, cleanly composed, and flexible network stacks. This paper introduces the networking architecture that turns RIOT into a powerful IoT system, to enable low-power wireless scenarios. RIOT networking offers (i) a modular architecture with generic interfaces for plugging in drivers, protocols, or entire stacks, (ii) support for multiple heterogeneous interfaces and stacks that can concurrently operate, and (iii) GNRC, its cleanly layered, recursively composed default network stack. We contribute an in-depth analysis of the communication performance and resource efficiency of RIOT, both on a micro-benchmarking level as well as by comparing IoT communication across different platforms. Our findings show that, though it is based on significantly different design trade-offs, the networking subsystem of RIOT achieves a performance equivalent to that of Contiki and TinyOS, the two operating systems which pioneered IoT software platforms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا