Do you want to publish a course? Click here

Connecting the World of Embedded Mobiles: The RIOT Approach to Ubiquitous Networking for the Internet of Things

58   0   0.0 ( 0 )
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

The Internet of Things (IoT) is rapidly evolving based on low-power compliant protocol standards that extend the Internet into the embedded world. Pioneering implementations have proven it is feasible to inter-network very constrained devices, but had to rely on peculiar cross-layered designs and offer a minimalistic set of features. In the long run, however, professional use and massive deployment of IoT devices require full-featured, cleanly composed, and flexible network stacks. This paper introduces the networking architecture that turns RIOT into a powerful IoT system, to enable low-power wireless scenarios. RIOT networking offers (i) a modular architecture with generic interfaces for plugging in drivers, protocols, or entire stacks, (ii) support for multiple heterogeneous interfaces and stacks that can concurrently operate, and (iii) GNRC, its cleanly layered, recursively composed default network stack. We contribute an in-depth analysis of the communication performance and resource efficiency of RIOT, both on a micro-benchmarking level as well as by comparing IoT communication across different platforms. Our findings show that, though it is based on significantly different design trade-offs, the networking subsystem of RIOT achieves a performance equivalent to that of Contiki and TinyOS, the two operating systems which pioneered IoT software platforms.



rate research

Read More

The Internet of Things combines various earlier areas of research. As a result, research on the subject is still organized around these pre-existing areas: distributed computing with services and objects, networks (usually combining 6lowpan with Zigbee etc. for the last-hop), artificial intelligence and semantic web, and human-computer interaction. We are yet to create a unified model that covers all these perspectives - domain, device, service, agent, etc. In this paper, we propose the concept of cells as units of structure and context in the Internet of things. This allows us to have a unified vocabulary to refer to single entities (whether dumb motes, intelligent spimes, or virtual services), intranets of things, and finally the complete Internet of things. The question that naturally follows, is what criteria we choose to demarcate boundaries; we suggest various possible answers to this question. We also mention how this concept ties into the existing visions and protocols, and suggest how it may be used as the foundation of a formal model.
Decades of experience have shown that there is no single one-size-fits-all solution that can be used to provision Internet globally and that invariably there are tradeoffs in the design of Internet. Despite the best efforts of networking researchers and practitioners, an ideal Internet experience is inaccessible to an overwhelming majority of people the world over, mainly due to the lack of cost efficient ways of provisioning high-performance global Internet. In this paper, we argue that instead of an exclusive focus on a utopian goal of universally accessible ideal networking (in which we have high throughput and quality of service as well as low latency and congestion), we should consider providing approximate networking through the adoption of context-appropriate tradeoffs. Approximate networking can be used to implement a pragmatic tiered global access to the Internet for all (GAIA) system in which different users the world over have different context-appropriate (but still contextually functional) Internet experience.
Wireless medium access control (MAC) and routing protocols are fundamental building blocks of the Internet of Things (IoT). As new IoT networking standards are being proposed and different existing solutions patched, evaluating the end-to-end performance of the network becomes challenging. Specific solutions designed to be beneficial, when stacked may have detrimental effects on the overall network performance. In this paper, an analysis of MAC and routing protocols for IoT is provided with focus on the IEEE 802.15.4 MAC and the IETF RPL standards. It is shown that existing routing metrics do not account for the complex interactions between MAC and routing, and thus novel metrics are proposed. This enables a protocol selection mechanism for selecting the routing option and adapting the MAC parameters, given specific performance constraints. Extensive analytical and experimental results show that the behavior of the MAC protocol can hurt the performance of the routing protocol and vice versa, unless these two are carefully optimized together by the proposed method.
User privacy concerns are widely regarded as a key obstacle to the success of modern smart cyber-physical systems. In this paper, we analyse, through an example, some of the requirements that future data collection architectures of these systems should implement to provide effective privacy protection for users. Then, we give an example of how these requirements can be implemented in a smart home scenario. Our example architecture allows the user to balance the privacy risks with the potential benefits and take a practical decision determining the extent of the sharing. Based on this example architecture, we identify a number of challenges that must be addressed by future data processing systems in order to achieve effective privacy management for smart cyber-physical systems.
The engineering vision of relying on the ``smart sky for supporting air traffic and the ``Internet above the clouds for in-flight entertainment has become imperative for the future aircraft industry. Aeronautical ad hoc Networking (AANET) constitutes a compelling concept for providing broadband communications above clouds by extending the coverage of Air-to-Ground (A2G) networks to oceanic and remote airspace via autonomous and self-configured wireless networking amongst commercial passenger airplanes. The AANET concept may be viewed as a new member of the family of Mobile ad hoc Networks (MANETs) in action above the clouds. However, AANETs have more dynamic topologies, larger and more variable geographical network size, stricter security requirements and more hostile transmission conditions. These specific characteristics lead to more grave challenges in aircraft mobility modeling, aeronautical channel modeling and interference mitigation as well as in network scheduling and routing. This paper provides an overview of AANET solutions by characterizing the associated scenarios, requirements and challenges. Explicitly, the research addressing the key techniques of AANETs, such as their mobility models, network scheduling and routing, security and interference are reviewed. Furthermore, we also identify the remaining challenges associated with developing AANETs and present their prospective solutions as well as open issues. The design framework of AANETs and the key technical issues are investigated along with some recent research results. Furthermore, a range of performance metrics optimized in designing AANETs and a number of representative multi-objective optimization algorithms are outlined.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا