Do you want to publish a course? Click here

On the Construction of a Post-Quantum Blockchain for Smart City

123   0   0.0 ( 0 )
 Added by Wensheng Gan
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Owing to some special characteristics and features, blockchain is a very useful technique that can securely organize diverse devices in a smart city. It finds wide applications, especially in distributed environments, where entities such as wireless sensors need to be certain of the authenticity of the server. As contemporary blockchain techniques that address post-quantum concerns have not been designed, in this study, we investigate a blockchain in the post-quantum setting and seek to discover how it can resist attacks from quantum computing. In addition, traditional proof of work (PoW)-based consensus protocols such as Bitcoin cannot supply memory mining, and the transaction capacity of each block in a blockchain is limited and needs to be expanded. Thus, a new post-quantum proof of work (post-quantum PoW) consensus algorithm for security and privacy of smart city applications is proposed. It can be used to not only protect a blockchain under a quantum computing attack compared to existing classical hash-based PoW algorithms but also to supply memory mining. Meanwhile, an identity-based post-quantum signature is embedded into a transaction process to construct lightweight transactions. Subsequently, we provide a detailed description on the execution of the post-quantum lightweight transaction in a blockchain. Overall, this work can help enrich the research on future post-quantum blockchain and support the construction or architecture of emerging blockchain-based smart cities.



rate research

Read More

The main problem faced by smart contract platforms is the amount of time and computational power required to reach consensus. In a classical blockchain model, each operation is in fact performed by each node, both to update the status and to validate the results of the calculations performed by others. In this short survey we sketch some state-of-the-art approaches to obtain an efficient and scalable computation of smart contracts. Particular emphasis is given to sharding, a promising method that allows parallelization and therefore a more efficient management of the computational resources of the network.
There is increased interest in smart vehicles acting as both data consumers and producers in smart cities. Vehicles can use smart city data for decision-making, such as dynamic routing based on traffic conditions. Moreover, the multitude of embedded sensors in vehicles can collectively produce a rich data set of the urban landscape that can be used to provide a range of services. Key to the success of this vision is a scalable and private architecture for trusted data sharing. This paper proposes a framework called SpeedyChain, that leverages blockchain technology to allow smart vehicles to share their data while maintaining privacy, integrity, resilience and non-repudiation in a decentralized, and tamper-resistant manner. Differently from traditional blockchain usage (e.g., Bitcoin and Ethereum), the proposed framework uses a blockchain design that decouples the data stored in the transactions from the block header, thus allowing for fast addition of data to the blocks. Furthermore, an expiration time for each block to avoid large sized blocks is proposed. This paper also presents an evaluation of the proposed framework in a network emulator to demonstrate its benefits.
Insurance is one of the fundamental services offered to the citizens to reduce their costs and assist them in case of an emergency. One of the most important challenges in the insurance industry is to address liability challenge and the forging of documents by the involved parties, i.e., insurance company or the users, in order to increase financial gain. Conventional methods to address this challenge is significantly time consuming and costly and also suffers from lock of transparency. In this paper, we propose a blockchain-based solution for the insurance industry in smart cities (BIS). BIS creates a big umbrella that consists of the smart city managers, insurance companies, users, and sensors and devices. The users are known by changeable Public Keys (PKs) that introduces a level of anonymity. The data collected by the sensors is stored in cloud or local storage and is shared with insurance company on demand to find the liable party that in turn increases the privacy of the users. BIS enables the users to prove and share the history of their insurances with other users or insurances. Using Proof of Concept (POC) implementation we demonstrated the applicability of blockchain in insurance industry. The implementation results prove that BIS significantly reduces delay involved in insurance industry as compared with conventional insurance methods.
The healthcare industry has witnessed significant transformations in e-health services where Electronic Health Records (EHRs) are transferred to mobile edge clouds to facilitate healthcare. Many edge cloud-based system designs have been proposed, but some technical challenges still remain, such as low quality of services (QoS), data privacy and system security due to centralized healthcare architectures. In this paper, we propose a novel hybrid approach of data offloading and data sharing for healthcare using edge cloud and blockchain. First, an efficient data offloading scheme is proposed where IoT health data can be offloaded to nearby edge servers for data processing with privacy awareness. Then, a data sharing scheme is integrated to enable data exchange among healthcare users via blockchain. Particularly, a trustworthy access control mechanism is developed using smart contracts for access authentication to achieve secure EHRs sharing. Implementation results from extensive real-world experiments show the superior advantages of the proposal over the existing schemes in terms of improved QoS, enhanced data privacy and security, and low smart contract costs.
A verifiable random function (VRF in short) is a powerful pseudo-random function that provides a non-interactively public verifiable proof for the correctness of its output. Recently, VRFs have found essential applications in blockchain design, such as random beacons and proof-of-stake consensus protocols. To our knowledge, the first generation of blockchain systems used inherently inefficient proof-of-work consensuses, and the research community tried to achieve the same properties by proposing proof-of-stake schemes where resource-intensive proof-of-work is emulated by cryptographic constructions. Unfortunately, those most discussed proof-of-stake consensuses (e.g., Algorand and Ouroborous family) are not future-proof because the building blocks are secure only under the classical hard assumptions; in particular, their designs ignore the advent of quantum computing and its implications. In this paper, we propose a generic compiler to obtain the post-quantum VRF from the simple VRF solution using symmetric-key primitives (e.g., non-interactive zero-knowledge system) with an intrinsic property of quantum-secure. Our novel solution is realized via two efficient zero-knowledge systems ZKBoo and ZKB++, respectively, to validate the compiler correctness. Our proof-of-concept implementation indicates that even today, the overheads introduced by our solution are acceptable in real-world deployments. We also demonstrate potential applications of a quantum-secure VRF, such as quantum-secure decentralized random beacon and lottery-based proof of stake consensus blockchain protocol.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا