No Arabic abstract
We apply the Greens function coupled cluster singles and doubles (GFCCSD) impurity solver to realistic impurity problems arising for strongly correlated solids within the self-energy embedding theory (SEET) framework. We describe the details of our GFCC solver implementation, investigate its performance, and highlight potential advantages and problems on examples of impurities created during the self-consistent SEET for antiferromagnetic MnO and paramagnetic SrMnO$_{3}$. GFCCSD provides satisfactory descriptions for weakly and moderately correlated impurities with sizes that are intractable by existing accurate impurity solvers such as exact diagonalization (ED). However, our data also shows that when correlations become strong, the singles and doubles approximation used in GFCC could lead to instabilities in searching for the particle number present in impurity problems. These instabilities appears especially severe when the impurity size gets larger and multiple degenerate orbitals with strong correlations are present. We conclude that to fully check the reliability of GFCCSD results and use them in fully {em ab initio} calculations in the absence of experiments, a verification from a GFCC solver with higher order excitations is necessary.
Quantum embedding methods have become a powerful tool to overcome deficiencies of traditional quantum modelling in materials science. However while these can be accurate, they generally lack the ability to be rigorously improved and still often rely on empirical parameters. Here, we reformulate quantum embedding to ensure the ability to systematically converge properties of real materials with accurate correlated wave function methods, controlled by a single, rapidly convergent parameter. By expanding supercell size, basis set, and the resolution of the fluctuation space of an embedded fragment, we show that the systematic improvability of the approach yields accurate structural and electronic properties of realistic solids without empirical parameters, even across changes in geometry. Results are presented in insulating, semi-metallic, and more strongly correlated regimes, finding state of the art agreement to experimental data.
We present a theoretical framework and implementation details for self-energy embedding theory (SEET) with the GW approximation for the treatment of weakly correlated degrees of freedom and configuration interactions solver for handing the strongly correlated degrees. On a series of molecular examples, for which the exact results are known within a given basis, we demonstrate that SEET(CI/GW) is a systematically improvable and well controlled method capable of giving accurate results and well behaved causal self-energies and Greens functions. We compare the theoretical framework of SEET(CI/GW) to that of GW+DMFT and comment on differences between these to approaches that aim to treat both strongly and weakly correlated simultaneously.
A fast impurity solver for the dynamical mean field theory(DMFT) named Two Mode Approxi- mation (TMA) is proposed based on the Gutzwiller variational approach, which captures the main features of both the coherent and incoherent motion of the electrons. The new solver works with real frequency at zero temperature and it provides directly the spectral function of the electrons. It can be easily generalized to multi-orbital impurity problems with general on-site interactions, which makes it very useful in LDA+DMFT. Benchmarks on one and two band Hubbard models are presented, and the results agree well with those of Exact Diagonalization (ED).
We have developed a new efficient and accurate impurity solver for the single impurity Anderson model (SIAM), which is based on a non-perturbative recursion technique in a space of operators and involves expanding the self-energy as a continued fraction. The method has no special occupation number or temperature restrictions; the only approximation is the number of levels of the continued fraction retained in the expansion. We also show how this approach can be used as a new approach to Dynamical Mean Field Theory (DMTF) and illustrate this with the Hubbard model. The three lowest orders of recursion give the Hartree-Fock, Hubbard I, and Hubbard III approximations. A higher level of recursion is able to reproduce the expected 3-peak structure in the spectral function and Fermi liquid behavior.
We investigate the performance of Greens function coupled cluster singles and doubles (CCSD) method as a solver for Greens function embedding methods. To develop an efficient CC solver, we construct the one-particle Greens function from the coupled cluster (CC) wave function based on a non-hermitian Lanczos algorithm. The major advantage of this method is that its scaling does not depend on the number of frequency points. We have tested the applicability of the CC Greens function solver in the weakly to strongly correlated regimes by employing it for a half-filled 1D Hubbard model projected onto a single site impurity problem and a half-filled 2D Hubbard model projected onto a 4-site impurity problem. For the 1D Hubbard model, for all interaction strengths, we observe an excellent agreement with the full configuration interaction (FCI) technique, both for the self-energy and spectral function. For the 2D Hubbard, we have employed an open-shell version of the current implementation and observed some discrepancies from FCI in the strongly correlated regime. Finally, on an example of a small ammonia cluster, we analyze the performance of the Greens function CCSD solver within the self-energy embedding theory (SEET) with Hartee-Fock (HF) and Greens function second order (GF2) for the treatment of the environment.