Do you want to publish a course? Click here

Extended Recursion in Operator Space (EROS), a new impurity solver for the single impurity Anderson model

125   0   0.0 ( 0 )
 Added by Jean-Pierre Julien
 Publication date 2008
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have developed a new efficient and accurate impurity solver for the single impurity Anderson model (SIAM), which is based on a non-perturbative recursion technique in a space of operators and involves expanding the self-energy as a continued fraction. The method has no special occupation number or temperature restrictions; the only approximation is the number of levels of the continued fraction retained in the expansion. We also show how this approach can be used as a new approach to Dynamical Mean Field Theory (DMTF) and illustrate this with the Hubbard model. The three lowest orders of recursion give the Hartree-Fock, Hubbard I, and Hubbard III approximations. A higher level of recursion is able to reproduce the expected 3-peak structure in the spectral function and Fermi liquid behavior.



rate research

Read More

The density matrix renormalization group method is applied to obtain the ground state phase diagram of the single impurity Anderson model on the honeycomb lattice at half filling. The calculation of local static quantities shows that the phase diagram contains two distinct phases, the local moment (LM) phase and the asymmetric strong coupling (ASC) phase. These results are supported by the local spin and charge excitation spectra, which exhibit qualitatively different behavior in these two phases and also reveal the existence of the valence fluctuating point at the phase boundary. For comparison, we also study the low-energy effective pseudogap Anderson model. Although the high-energy excitations are obviously different, we find that the ground state phase diagram and the asymptotically low-energy excitations are in good quantitative agreement with those for the single impurity Anderson model on the honeycomb lattice, thus providing the first quantitative justification for the previous studies based on low-energy approximate approaches. Furthermore, we find that the lowest entanglement level is doubly degenerate for the LM phase, whereas it is singlet for the ASC phase and is accidentally three fold degenerate at the valence fluctuating point. Our results therefore clearly demonstrate that the low-lying entanglement spectrum can be used to determine with high accuracy the phase boundary of the impurity quantum phase transition.
A fast impurity solver for the dynamical mean field theory(DMFT) named Two Mode Approxi- mation (TMA) is proposed based on the Gutzwiller variational approach, which captures the main features of both the coherent and incoherent motion of the electrons. The new solver works with real frequency at zero temperature and it provides directly the spectral function of the electrons. It can be easily generalized to multi-orbital impurity problems with general on-site interactions, which makes it very useful in LDA+DMFT. Benchmarks on one and two band Hubbard models are presented, and the results agree well with those of Exact Diagonalization (ED).
One of the main open problems in the field of transport in strongly interacting nanostructures is the understanding of currents beyond the linear response regime. In this work, we consider the single-impurity Anderson model and use the adaptive time-dependent density matrix renormalization group (tDMRG) method to compute real-time currents out of equilibrium. We first focus on the particle-hole symmetric point where Kondo correlations are the strongest and then extend the study of the nonequilibrium transport to the mixed-valence regime. As a main result, we present accurate data for the current-voltage characteristics of this model.
The Kondo resonance at the Fermi level is well-established for the electronic structure of Ce (f1 electron) and Yb (f1 hole) based systems. In this work, we report complementary experimental and theoretical studies on the Kondo resonance in Pr-based f2 system, PrTi2Al20. Using Pr 3d-4f resonant photoemission spectroscopy and single impurity Anderson model (SIAM) calculations including the full multiplets of Pr ions, we show that an f2 system can also give rise to a Kondo resonance at the Fermi level. The Kondo resonance peak is experimentally observed through a final-state-multiplet dependent resonance and is reproduced with properly tuned hybridization strength in SIAM calculations.
We analyze the process of thermalization, dynamics and the eigenstate thermalization hypothesis (ETH) for the single impurity Anderson model, focusing on the Kondo regime. For this we construct the complete eigenbasis of the Hamiltonian using the numerical renormalization group (NRG) method in the language of the matrix product states. It is a peculiarity of the NRG that while the Wilson chain is supposed to describe a macroscopic bath, very few single particle excitations already suffice to essentially thermalize the impurity system at finite temperature, which amounts to having added a macroscopic amount of energy. Thus given an initial state of the system such as the ground state together with microscopic excitations, we calculate the spectral function of the impurity using the microcanonical and diagonal and grand canonical ensembles. By adding or removing particles at a certain Wilson energy shell on top of the ground state, we find qualitative agreement between the spectral functions calculated for different ensembles. This indicates that the system thermalizes in the long-time limit, and can be described by an appropriate statistical-mechanical ensemble. Moreover, by calculating the impurity spectral density at the Fermi level and the dot occupancy for energy eigenstates relevant for microcanonical ensemble, we find good support for ETH. The ultimate mechanism responsible for this effective thermalization within the NRG can be identified as Anderson orthogonality: the more charge that needs to flow to or from infinity after applying a local excitation within the Wilson chain, the more the system looks thermal afterwards at an increased temperature. For the same reason, however, thermalization fails if charge rearrangement after the excitation remains mostly local.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا