No Arabic abstract
Few-shot crosslingual transfer has been shown to outperform its zero-shot counterpart with pretrained encoders like multilingual BERT. Despite its growing popularity, little to no attention has been paid to standardizing and analyzing the design of few-shot experiments. In this work, we highlight a fundamental risk posed by this shortcoming, illustrating that the model exhibits a high degree of sensitivity to the selection of few shots. We conduct a large-scale experimental study on 40 sets of sampled few shots for six diverse NLP tasks across up to 40 languages. We provide an analysis of success and failure cases of few-shot transfer, which highlights the role of lexical features. Additionally, we show that a straightforward full model finetuning approach is quite effective for few-shot transfer, outperforming several state-of-the-art few-shot approaches. As a step towards standardizing few-shot crosslingual experimental designs, we make our sampled few shots publicly available.
In this paper, we take stock of the current state of summarization datasets and explore how different factors of datasets influence the generalization behaviour of neural extractive summarization models. Specifically, we first propose several properties of datasets, which matter for the generalization of summarization models. Then we build the connection between priors residing in datasets and model designs, analyzing how different properties of datasets influence the choices of model structure design and training methods. Finally, by taking a typical dataset as an example, we rethink the process of the model design based on the experience of the above analysis. We demonstrate that when we have a deep understanding of the characteristics of datasets, a simple approach can bring significant improvements to the existing state-of-the-art model.A
Current methods for training robust networks lead to a drop in test accuracy, which has led prior works to posit that a robustness-accuracy tradeoff may be inevitable in deep learning. We take a closer look at this phenomenon and first show that real image datasets are actually separated. With this property in mind, we then prove that robustness and accuracy should both be achievable for benchmark datasets through locally Lipschitz functions, and hence, there should be no inherent tradeoff between robustness and accuracy. Through extensive experiments with robustness methods, we argue that the gap between theory and practice arises from two limitations of current methods: either they fail to impose local Lipschitzness or they are insufficiently generalized. We explore combining dropout with robust training methods and obtain better generalization. We conclude that achieving robustness and accuracy in practice may require using methods that impose local Lipschitzness and augmenting them with deep learning generalization techniques. Code available at https://github.com/yangarbiter/robust-local-lipschitz
We study how the behavior of deep policy gradient algorithms reflects the conceptual framework motivating their development. To this end, we propose a fine-grained analysis of state-of-the-art methods based on key elements of this framework: gradient estimation, value prediction, and optimization landscapes. Our results show that the behavior of deep policy gradient algorithms often deviates from what their motivating framework would predict: the surrogate objective does not match the true reward landscape, learned value estimators fail to fit the true value function, and gradient estimates poorly correlate with the true gradient. The mismatch between predicted and empirical behavior we uncover highlights our poor understanding of current methods, and indicates the need to move beyond current benchmark-centric evaluation methods.
When scaled to hundreds of billions of parameters, pretrained language models such as GPT-3 (Brown et al., 2020) achieve remarkable few-shot performance. However, enormous amounts of compute are required for training and applying such big models, resulting in a large carbon footprint and making it difficult for researchers and practitioners to use them. We show that performance similar to GPT-3 can be obtained with language models that are much greener in that their parameter count is several orders of magnitude smaller. This is achieved by converting textual inputs into cloze questions that contain a task description, combined with gradient-based optimization; exploiting unlabeled data gives further improvements. We identify key factors required for successful natural language understanding with small language models.
Codistillation has been proposed as a mechanism to share knowledge among concurrently trained models by encouraging them to represent the same function through an auxiliary loss. This contrasts with the more commonly used fully-synchronous data-parallel stochastic gradient descent methods, where different model replicas average their gradients (or parameters) at every iteration and thus maintain identical parameters. We investigate codistillation in a distributed training setup, complementing previous work which focused on extremely large batch sizes. Surprisingly, we find that even at moderate batch sizes, models trained with codistillation can perform as well as models trained with synchronous data-parallel methods, despite using a much weaker synchronization mechanism. These findings hold across a range of batch sizes and learning rate schedules, as well as different kinds of models and datasets. Obtaining this level of accuracy, however, requires properly accounting for the regularization effect of codistillation, which we highlight through several empirical observations. Overall, this work contributes to a better understanding of codistillation and how to best take advantage of it in a distributed computing environment.