Do you want to publish a course? Click here

A Closer Look at Accuracy vs. Robustness

174   0   0.0 ( 0 )
 Added by Yao-Yuan Yang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Current methods for training robust networks lead to a drop in test accuracy, which has led prior works to posit that a robustness-accuracy tradeoff may be inevitable in deep learning. We take a closer look at this phenomenon and first show that real image datasets are actually separated. With this property in mind, we then prove that robustness and accuracy should both be achievable for benchmark datasets through locally Lipschitz functions, and hence, there should be no inherent tradeoff between robustness and accuracy. Through extensive experiments with robustness methods, we argue that the gap between theory and practice arises from two limitations of current methods: either they fail to impose local Lipschitzness or they are insufficiently generalized. We explore combining dropout with robust training methods and obtain better generalization. We conclude that achieving robustness and accuracy in practice may require using methods that impose local Lipschitzness and augmenting them with deep learning generalization techniques. Code available at https://github.com/yangarbiter/robust-local-lipschitz



rate research

Read More

We study the adversarial robustness of information bottleneck models for classification. Previous works showed that the robustness of models trained with information bottlenecks can improve upon adversarial training. Our evaluation under a diverse range of white-box $l_{infty}$ attacks suggests that information bottlenecks alone are not a strong defense strategy, and that previous results were likely influenced by gradient obfuscation.
We study how the behavior of deep policy gradient algorithms reflects the conceptual framework motivating their development. To this end, we propose a fine-grained analysis of state-of-the-art methods based on key elements of this framework: gradient estimation, value prediction, and optimization landscapes. Our results show that the behavior of deep policy gradient algorithms often deviates from what their motivating framework would predict: the surrogate objective does not match the true reward landscape, learned value estimators fail to fit the true value function, and gradient estimates poorly correlate with the true gradient. The mismatch between predicted and empirical behavior we uncover highlights our poor understanding of current methods, and indicates the need to move beyond current benchmark-centric evaluation methods.
Codistillation has been proposed as a mechanism to share knowledge among concurrently trained models by encouraging them to represent the same function through an auxiliary loss. This contrasts with the more commonly used fully-synchronous data-parallel stochastic gradient descent methods, where different model replicas average their gradients (or parameters) at every iteration and thus maintain identical parameters. We investigate codistillation in a distributed training setup, complementing previous work which focused on extremely large batch sizes. Surprisingly, we find that even at moderate batch sizes, models trained with codistillation can perform as well as models trained with synchronous data-parallel methods, despite using a much weaker synchronization mechanism. These findings hold across a range of batch sizes and learning rate schedules, as well as different kinds of models and datasets. Obtaining this level of accuracy, however, requires properly accounting for the regularization effect of codistillation, which we highlight through several empirical observations. Overall, this work contributes to a better understanding of codistillation and how to best take advantage of it in a distributed computing environment.
Todays state-of-the-art image classifiers fail to correctly classify carefully manipulated adversarial images. In this work, we develop a new, localized adversarial attack that generates adversarial examples by imperceptibly altering the backgrounds of normal images. We first use this attack to highlight the unnecessary sensitivity of neural networks to changes in the background of an image, then use it as part of a new training technique: localized adversarial training. By including locally adversarial images in the training set, we are able to create a classifier that suffers less loss than a non-adversarially trained counterpart model on both natural and adversarial inputs. The evaluation of our localized adversarial training algorithm on MNIST and CIFAR-10 datasets shows decreased accuracy loss on natural images, and increased robustness against adversarial inputs.
One of the key drivers of complexity in the classical (stochastic) multi-armed bandit (MAB) problem is the difference between mean rewards in the top two arms, also known as the instance gap. The celebrated Upper Confidence Bound (UCB) policy is among the simplest optimism-based MAB algorithms that naturally adapts to this gap: for a horizon of play n, it achieves optimal O(log n) regret in instances with large gaps, and a near-optimal O(sqrt{n log n}) minimax regret when the gap can be arbitrarily small. This paper provides new results on the arm-sampling behavior of UCB, leading to several important insights. Among these, it is shown that arm-sampling rates under UCB are asymptotically deterministic, regardless of the problem complexity. This discovery facilitates new sharp asymptotics and a novel alternative proof for the O(sqrt{n log n}) minimax regret of UCB. Furthermore, the paper also provides the first complete process-level characterization of the MAB problem under UCB in the conventional diffusion scaling. Among other things, the small gap worst-case lens adopted in this paper also reveals profound distinctions between the behavior of UCB and Thompson Sampling, such as an incomplete learning phenomenon characteristic of the latter.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا