Do you want to publish a course? Click here

A Closer Look at Deep Policy Gradients

154   0   0.0 ( 0 )
 Added by Andrew Ilyas
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We study how the behavior of deep policy gradient algorithms reflects the conceptual framework motivating their development. To this end, we propose a fine-grained analysis of state-of-the-art methods based on key elements of this framework: gradient estimation, value prediction, and optimization landscapes. Our results show that the behavior of deep policy gradient algorithms often deviates from what their motivating framework would predict: the surrogate objective does not match the true reward landscape, learned value estimators fail to fit the true value function, and gradient estimates poorly correlate with the true gradient. The mismatch between predicted and empirical behavior we uncover highlights our poor understanding of current methods, and indicates the need to move beyond current benchmark-centric evaluation methods.



rate research

Read More

The introduction of the generative adversarial imitation learning (GAIL) algorithm has spurred the development of scalable imitation learning approaches using deep neural networks. The GAIL objective can be thought of as 1) matching the expert policys state distribution; 2) penalising the learned policys state distribution; and 3) maximising entropy. While theoretically motivated, in practice GAIL can be difficult to apply, not least due to the instabilities of adversarial training. In this paper, we take a pragmatic look at GAIL and related imitation learning algorithms. We implement and automatically tune a range of algorithms in a unified experimental setup, presenting a fair evaluation between the competing methods. From our results, our primary recommendation is to consider non-adversarial methods. Furthermore, we discuss the common components of imitation learning objectives, and present promising avenues for future research.
Current methods for training robust networks lead to a drop in test accuracy, which has led prior works to posit that a robustness-accuracy tradeoff may be inevitable in deep learning. We take a closer look at this phenomenon and first show that real image datasets are actually separated. With this property in mind, we then prove that robustness and accuracy should both be achievable for benchmark datasets through locally Lipschitz functions, and hence, there should be no inherent tradeoff between robustness and accuracy. Through extensive experiments with robustness methods, we argue that the gap between theory and practice arises from two limitations of current methods: either they fail to impose local Lipschitzness or they are insufficiently generalized. We explore combining dropout with robust training methods and obtain better generalization. We conclude that achieving robustness and accuracy in practice may require using methods that impose local Lipschitzness and augmenting them with deep learning generalization techniques. Code available at https://github.com/yangarbiter/robust-local-lipschitz
Codistillation has been proposed as a mechanism to share knowledge among concurrently trained models by encouraging them to represent the same function through an auxiliary loss. This contrasts with the more commonly used fully-synchronous data-parallel stochastic gradient descent methods, where different model replicas average their gradients (or parameters) at every iteration and thus maintain identical parameters. We investigate codistillation in a distributed training setup, complementing previous work which focused on extremely large batch sizes. Surprisingly, we find that even at moderate batch sizes, models trained with codistillation can perform as well as models trained with synchronous data-parallel methods, despite using a much weaker synchronization mechanism. These findings hold across a range of batch sizes and learning rate schedules, as well as different kinds of models and datasets. Obtaining this level of accuracy, however, requires properly accounting for the regularization effect of codistillation, which we highlight through several empirical observations. Overall, this work contributes to a better understanding of codistillation and how to best take advantage of it in a distributed computing environment.
A widely-used actor-critic reinforcement learning algorithm for continuous control, Deep Deterministic Policy Gradients (DDPG), suffers from the overestimation problem, which can negatively affect the performance. Although the state-of-the-art Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm mitigates the overestimation issue, it can lead to a large underestimation bias. In this paper, we propose to use the Boltzmann softmax operator for value function estimation in continuous control. We first theoretically analyze the softmax operator in continuous action space. Then, we uncover an important property of the softmax operator in actor-critic algorithms, i.e., it helps to smooth the optimization landscape, which sheds new light on the benefits of the operator. We also design two new algorithms, Softmax Deep Deterministic Policy Gradients (SD2) and Softmax Deep Double Deterministic Policy Gradients (SD3), by building the softmax operator upon single and double estimators, which can effectively improve the overestimation and underestimation bias. We conduct extensive experiments on challenging continuous control tasks, and results show that SD3 outperforms state-of-the-art methods.
We study the adversarial robustness of information bottleneck models for classification. Previous works showed that the robustness of models trained with information bottlenecks can improve upon adversarial training. Our evaluation under a diverse range of white-box $l_{infty}$ attacks suggests that information bottlenecks alone are not a strong defense strategy, and that previous results were likely influenced by gradient obfuscation.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا