Do you want to publish a course? Click here

Satisfiability problems on sums of Kripke frames

137   0   0.0 ( 0 )
 Added by Ilya Shapirovsky
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We consider the operation of sum on Kripke frames, where a family of frames-summands is indexed by elements of another frame. In many cases, the modal logic of sums inherits the finite model property and decidability from the modal logic of summands. In this paper we show that, under a general condition, the satisfiability problem on sums is polynomial space Turing reducible to the satisfiability problem on summands. In particular, for many modal logics decidability in PSPACE is an immediate corollary from the semantic characterization of the logic.



rate research

Read More

149 - Bernd R. Schuh 2009
For formulas F of propositional calculus I introduce a metavariable MF and show how it can be used to define an algorithm for testing satisfiability. MF is a formula which is true/false under all possible truth assignments iff F is satisfiable/unsatisfiable. In this sense MF is a metavariable with the meaning F is SAT. For constructing MF a group of transformations of the basic variables ai is used which corresponds to flipping literals to their negation. The whole procedure corresponds to branching algorithms where a formula is split with respect to the truth values of its variables, one by one. Each branching step corresponds to an approximation to the metatheorem which doubles the chance to find a satisfying truth assignment but also doubles the length of the formulas to be tested, in principle. Simplifications arise by additional length reductions. I also discuss the notion of logical primes and show that each formula can be written as a uniquely defined product of such prime factors. Satisfying truth assignments can be found by determining the missing primes in the factorization of a formula.
Finite-domain constraint satisfaction problems are either solvable by Datalog, or not even expressible in fixed-point logic with counting. The border between the two regimes coincides with an important dichotomy in universal algebra; in particular, the border can be described by a strong height-one Maltsev condition. For infinite-domain CSPs, the situation is more complicated even if the template structure of the CSP is model-theoretically tame. We prove that there is no Maltsev condition that characterizes Datalog already for the CSPs of first-order reducts of (Q;<); such CSPs are called temporal CSPs and are of fundamental importance in infinite-domain constraint satisfaction. Our main result is a complete classification of temporal CSPs that can be expressed in one of the following logical formalisms: Datalog, fixed-point logic (with or without counting), or fixed-point logic with the Boolean rank operator. The classification shows that many of the equivalent conditions in the finite fail to capture expressibility in Datalog or fixed-point logic already for temporal CSPs.
This report introduces and investigates a family of metrics on sets of pointed Kripke models. The metrics are generalizations of the Hamming distance applicable to countably infinite binary strings and, by extension, logical theories or semantic structures. We first study the topological properties of the resulting metric spaces. A key result provides sufficient conditions for spaces having the Stone property, i.e., being compact, totally disconnected and Hausdorff. Second, we turn to mappings, where it is shown that a widely used type of model transformations, product updates, give rise to continuous maps in the induced topology.
The solution-space structure of the 3-Satisfiability Problem (3-SAT) is studied as a function of the control parameter alpha (ratio of number of clauses to the number of variables) using numerical simulations. For this purpose, one has to sample the solution space with uniform weight. It is shown here that standard stochastic local-search (SLS) algorithms like ASAT and MCMCMC (also known as parallel tempering) exhibit a sampling bias. Nevertheless, unbiased samples of solutions can be obtained using the ballistic-networking approach, which is introduced here. It is a generalization of ballistic search methods and yields also a cluster structure of the solution space. As application, solutions of 3-SAT instances are generated using ASAT plus ballistic networking. The numerical results are compatible with a previous analytic prediction of a simple solution-space structure for small values of alpha and a transition to a clustered phase at alpha_c ~ 3.86, where the solution space breaks up into several non-negligible clusters. Furthermore, in the thermodynamic limit there are, for values of alpha close to the SATUNSAT transition alpha_s ~ 4.267, always clusters without any frozen variables. This may explain why some SLS algorithms are able to solve very large 3-SAT instances close to the SAT-UNSAT transition.
Efficient solutions to NP-complete problems would significantly benefit both science and industry. However, such problems are intractable on digital computers based on the von Neumann architecture, thus creating the need for alternative solutions to tackle such problems. Recently, a deterministic, continuous-time dynamical system (CTDS) was proposed (Nat.Phys. {bf 7}(12), 966 (2011)) to solve a representative NP-complete problem, Boolean Satisfiability (SAT). This solver shows polynomial analog time-complexity on even the hardest benchmark $k$-SAT ($k geq 3$) formulas, but at an energy cost through exponentially driven auxiliary variables. This paper presents a novel analog hardware SAT solver, AC-SAT, implementing the CTDS via incorporating novel, analog circuit design ideas. AC-SAT is intended to be used as a co-processor and is programmable for handling different problem specifications. It is especially effective for solving hard $k$-SAT problem instances that are challenging for algorithms running on digital machines. Furthermore, with its modular design, AC-SAT can readily be extended to solve larger size problems, while the size of the circuit grows linearly with the product of the number of variables and number of clauses. The circuit is designed and simulated based on a 32nm CMOS technology. SPICE simulation results show speedup factors of $sim$10$^4$ on even the hardest 3-SAT problems, when compared with a state-of-the-art SAT solver on digital computers. As an example, for hard problems with $N=50$ variables and $M=212$ clauses, solutions are found within from a few $ns$ to a few hundred $ns$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا