Do you want to publish a course? Click here

Numerical Solution-Space Analysis of Satisfiability Problems

101   0   0.0 ( 0 )
 Added by Alexander Mann
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

The solution-space structure of the 3-Satisfiability Problem (3-SAT) is studied as a function of the control parameter alpha (ratio of number of clauses to the number of variables) using numerical simulations. For this purpose, one has to sample the solution space with uniform weight. It is shown here that standard stochastic local-search (SLS) algorithms like ASAT and MCMCMC (also known as parallel tempering) exhibit a sampling bias. Nevertheless, unbiased samples of solutions can be obtained using the ballistic-networking approach, which is introduced here. It is a generalization of ballistic search methods and yields also a cluster structure of the solution space. As application, solutions of 3-SAT instances are generated using ASAT plus ballistic networking. The numerical results are compatible with a previous analytic prediction of a simple solution-space structure for small values of alpha and a transition to a clustered phase at alpha_c ~ 3.86, where the solution space breaks up into several non-negligible clusters. Furthermore, in the thermodynamic limit there are, for values of alpha close to the SATUNSAT transition alpha_s ~ 4.267, always clusters without any frozen variables. This may explain why some SLS algorithms are able to solve very large 3-SAT instances close to the SAT-UNSAT transition.



rate research

Read More

We study numerically the cluster structure of random ensembles of two NP-hard optimization problems originating in computational complexity, the vertex-cover problem and the number partitioning problem. We use branch-and-bound type algorithms to obtain exact solutions of these problems for moderate system sizes. Using two methods, direct neighborhood-based clustering and hierarchical clustering, we investigate the structure of the solution space. The main result is that the correspondence between solution structure and the phase diagrams of the problems is not unique. Namely, for vertex cover we observe a drastic change of the solution space from large single clusters to multiple nested levels of clusters. In contrast, for the number-partitioning problem, the phase space looks always very simple, similar to a random distribution of the lowest-energy configurations. This holds in the ``easy/solvable phase as well as in the ``hard/unsolvable phase.
Boolean satisfiability is a propositional logic problem of interest in multiple fields, e.g., physics, mathematics, and computer science. Beyond a field of research, instances of the SAT problem, as it is known, require efficient solution methods in a variety of applications. It is the decision problem of determining whether a Boolean formula has a satisfying assignment, believed to require exponentially growing time for an algorithm to solve for the worst-case instances. Yet, the efficient solution of many classes of Boolean formulae eludes even the most successful algorithms, not only for the worst-case scenarios, but also for typical-case instances. Here, we introduce a memory-assisted physical system (a digital memcomputing machine) that, when its non-linear ordinary differential equations are integrated numerically, shows evidence for polynomially-bounded scalability while solving hard planted-solution instances of SAT, known to require exponential time to solve in the typical case for both complete and incomplete algorithms. Furthermore, we analytically demonstrate that the physical system can efficiently solve the SAT problem in continuous time, without the need to introduce chaos or an exponentially growing energy. The efficiency of the simulations is related to the collective dynamical properties of the original physical system that persist in the numerical integration to robustly guide the solution search even in the presence of numerical errors. We anticipate our results to broaden research directions in physics-inspired computing paradigms ranging from theory to application, from simulation to hardware implementation.
173 - S. Knysh , V.N. Smelyanskiy 2008
We study the quantum version of the random $K$-Satisfiability problem in the presence of the external magnetic field $Gamma$ applied in the transverse direction. We derive the replica-symmetric free energy functional within static approximation and the saddle-point equation for the order parameter: the distribution $P[h(m)]$ of functions of magnetizations. The order parameter is interpreted as the histogram of probability distributions of individual magnetizations. In the limit of zero temperature and small transverse fields, to leading order in $Gamma$ magnetizations $m approx 0$ become relevant in addition to purely classical values of $m approx pm 1$. Self-consistency equations for the order parameter are solved numerically using Quasi Monte Carlo method for K=3. It is shown that for an arbitrarily small $Gamma$ quantum fluctuations destroy the phase transition present in the classical limit $Gamma=0$, replacing it with a smooth crossover transition. The implications of this result with respect to the expected performance of quantum optimization algorithms via adiabatic evolution are discussed. The replica-symmetric solution of the classical random $K$-Satisfiability problem is briefly revisited. It is shown that the phase transition at T=0 predicted by the replica-symmetric theory is of continuous type with atypical critical exponents.
We study the set of solutions of random k-satisfiability formulae through the cavity method. It is known that, for an interval of the clause-to-variables ratio, this decomposes into an exponential number of pure states (clusters). We refine substantially this picture by: (i) determining the precise location of the clustering transition; (ii) uncovering a second `condensation phase transition in the structure of the solution set for k larger or equal than 4. These results both follow from computing the large deviation rate of the internal entropy of pure states. From a technical point of view our main contributions are a simplified version of the cavity formalism for special values of the Parisi replica symmetry breaking parameter m (in particular for m=1 via a correspondence with the tree reconstruction problem) and new large-k expansions.
We consider a weak adversarial network approach to numerically solve a class of inverse problems, including electrical impedance tomography and dynamic electrical impedance tomography problems. We leverage the weak formulation of PDE in the given inverse problem, and parameterize the solution and the test function as deep neural networks. The weak formulation and the boundary conditions induce a minimax problem of a saddle function of the network parameters. As the parameters are alternatively updated, the network gradually approximates the solution of the inverse problem. We provide theoretical justifications on the convergence of the proposed algorithm. Our method is completely mesh-free without any spatial discretization, and is particularly suitable for problems with high dimensionality and low regularity on solutions. Numerical experiments on a variety of test inverse problems demonstrate the promising accuracy and efficiency of our approach.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا