Do you want to publish a course? Click here

The Multi-terminal Inverse AC Josephson Effect

186   0   0.0 ( 0 )
 Added by Ethan Arnault
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

When a Josephson junction is exposed to microwave radiation, it undergoes the inverse AC Josephson effect - the phase of the junction locks to the drive frequency. As a result, the I-V curves of the junction acquire Shapiro steps of quantized voltage. If the junction has three or more superconducting contacts, coupling between different pairs of terminals must be taken into account and the state of the junction evolves in a phase space of higher dimensionality. Here, we study the multi-terminal inverse AC Josephson effect in a graphene sample with three superconducting terminals. We observe robust fractional Shapiro steps and correlated switching events, which can only be explained by considering the device as a completely connected Josephson network. We successfully simulate the observed behaviors using a modified two-dimensional RCSJ model. Our results suggest multi-terminal Josephson junctions are a playground to study highly-connected nonlinear networks with novel topologies.



rate research

Read More

Establishment of phase-coherence and a non-dissipative (super)current between two weakly coupled superconductors, known as the Josephson effect, plays a foundational role in basic physics and applications to metrology, precision sensing, high-speed digital electronics, and quantum computing. The junction ranges from planar insulating oxides to single atoms, molecules, semiconductor nanowires, and generally to any finite-size coherent conductor. Recently, junctions of more than two superconducting terminals gained broad attention in the context of braiding of Majorana fermions in the solid state for fault-tolerant quantum computing, and accessing physics and topology in dimensions higher than three. Here we report the first observation of Josephson effect in 3- and 4-terminal junctions, fabricated in a top-down fashion from a semiconductor/superconductor (InAs/Al) epitaxial two-dimensional heterostructure. Due to interactions, the critical current of an N-terminal junction becomes the boundary of an (N-1)-dimensional manifold of simultaneously allowed supercurrents. The measured shapes of such manifolds are explained by the scattering theory of mesoscopic superconductivity, and they can be remarkably sensitive to the junctions symmetry class. Furthermore, we observed a notably high-order (up to 8) multiple Andreev reflections simultaneously across every terminals pair, which verifies the multi-terminal nature of normal scattering and a high interface quality in our devices. Given the previously shown gate-control of carrier density and evidence of spin-orbit scattering in InAs/Al heterostructures, and device compatibility with other 2D materials, the multi-terminal Josephson effect reported here can become a testbed for physics and applications of topological superconductivity.
159 - K. Le Calvez , L. Veyrat , F. Gay 2018
Topological Josephson junctions designed on the surface of a 3D-topological insulator (TI) harbor Majorana bound states (MBSs) among a continuum of conventional Andreev bound states. The distinct feature of these MBSs lies in the $4pi$-periodicity of their energy-phase relation that yields a fractional ac Josephson effect and a suppression of odd Shapiro steps under $r!f$ irradiation. Yet, recent experiments showed that a few, or only the first, odd Shapiro steps are missing, casting doubts on the interpretation. Here, we show that Josephson junctions tailored on the large bandgap 3D TI Bi$_2$Se$_3$ exhibit a fractional ac Josephson effect acting on the first Shapiro step only. With a modified resistively shunted junction model, we demonstrate that the resilience of higher order odd Shapiro steps can be accounted for by thermal poisoning driven by Joule overheating. Furthermore, we uncover a residual supercurrent at the nodes between Shapiro lobes, which provides a direct and novel signature of the current carried by the MBS. Our findings showcase the crucial role of thermal effects in topological Josephson junctions and lend support to the Majorana origin of the partial suppression of odd Shapiro steps.
We investigate the electronic properties of ballistic planar Josephson junctions with multiple superconducting terminals. Our devices consist of monolayer graphene encapsulated in boron nitride with molybdenum-rhenium contacts. Resistance measurements yield multiple resonant features, which are attributed to supercurrent flow among adjacent and non-adjacent Josephson junctions. In particular, we find that superconducting and dissipative currents coexist within the same region of graphene. We show that the presence of dissipative currents primarily results in electron heating and estimate the associated temperature rise. We find that the electrons in encapsulated graphene are efficiently cooled through the electron-phonon coupling.
We report the results of several nonequilibrium experiments performed on superconducting/normal/superconducting (S/N/S) Josephson junctions containing either one or two extra terminals that connect to normal reservoirs. Currents injected into the junctions from the normal reservoirs induce changes in the electron energy distribution function, which can change the properties of the junction. A simple experiment performed on a 3-terminal sample demonstrates that quasiparticle current and supercurrent can coexist in the normal region of the S/N/S junction. When larger voltages are applied to the normal reservoir, the sign of the current-phase relation of the junction can be reversed, creating a $pi$-junction. We compare quantitatively the maximum critical currents obtained in 4-terminal $pi$-junctions when the voltages on the normal reservoirs have the same or opposite sign with respect to the superconductors. We discuss the challenges involved in creating a Zeeman $pi$-junction with a parallel applied magnetic field and show in detail how the orbital effect suppresses the critical current. Finally, when normal current and supercurrent are simultaneously present in the junction, the distribution function develops a spatially inhomogeneous component that can be interpreted as an effective temperature gradient across the junction, with a sign that is controllable by the supercurrent. Taken as a whole, these experiments illustrate the richness and complexity of S/N/S Josephson junctions in nonequilibrium situations.
We study the response of high-critical current proximity Josephson junctions to a microwave excitation. Electron over-heating in such devices is known to create hysteretic dc voltage-current characteristics. Here we demonstrate that it also strongly influences the ac response. The interplay of electron over-heating and ac Josephson dynamics is revealed by the evolution of the Shapiro steps with the microwave drive amplitude. Extending the resistively shunted Josephson junction model by including a thermal balance for the electronic bath coupled to phonons, a strong electron over-heating is obtained.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا