We study the response of high-critical current proximity Josephson junctions to a microwave excitation. Electron over-heating in such devices is known to create hysteretic dc voltage-current characteristics. Here we demonstrate that it also strongly influences the ac response. The interplay of electron over-heating and ac Josephson dynamics is revealed by the evolution of the Shapiro steps with the microwave drive amplitude. Extending the resistively shunted Josephson junction model by including a thermal balance for the electronic bath coupled to phonons, a strong electron over-heating is obtained.
Topological Josephson junctions designed on the surface of a 3D-topological insulator (TI) harbor Majorana bound states (MBSs) among a continuum of conventional Andreev bound states. The distinct feature of these MBSs lies in the $4pi$-periodicity of their energy-phase relation that yields a fractional ac Josephson effect and a suppression of odd Shapiro steps under $r!f$ irradiation. Yet, recent experiments showed that a few, or only the first, odd Shapiro steps are missing, casting doubts on the interpretation. Here, we show that Josephson junctions tailored on the large bandgap 3D TI Bi$_2$Se$_3$ exhibit a fractional ac Josephson effect acting on the first Shapiro step only. With a modified resistively shunted junction model, we demonstrate that the resilience of higher order odd Shapiro steps can be accounted for by thermal poisoning driven by Joule overheating. Furthermore, we uncover a residual supercurrent at the nodes between Shapiro lobes, which provides a direct and novel signature of the current carried by the MBS. Our findings showcase the crucial role of thermal effects in topological Josephson junctions and lend support to the Majorana origin of the partial suppression of odd Shapiro steps.
Topological superconductors which support Majorana fermions are thought to be realized in one-dimensional semiconducting wires coupled to a superconductor. Such excitations are expected to exhibit non-Abelian statistics and can be used to realize quantum gates that are topologically protected from local sources of decoherence. Here we report the observation of the fractional a.c. Josephson effect in a hybrid semiconductor/superconductor InSb/Nb nanowire junction, a hallmark of topological matter. When the junction is irradiated with a radio-frequency f in the absence of an external magnetic field, quantized voltage steps (Shapiro steps) with a height hf/2e are observed, as is expected for conventional superconductor junctions, where the supercurrent is carried by charge-2e Cooper pairs. At high magnetic fields the height of the first Shapiro step is doubled to hf/e, suggesting that the supercurrent is carried by charge-e quasiparticles. This is a unique signature of Majorana fermions, elusive particles predicted ca. 80 years ago.
We analyze the magnetic and transport properties of a double quantum dot coupled to superconducting leads. In addition to the possible phase transition to a $pi$ state, already present in the single dot case, this system exhibits a richer magnetic behavior due to the competition between Kondo and inter-dot antiferromagnetic coupling. We obtain results for the Josephson current which may help to understand recent experiments on superconductor-metallofullerene dimer junctions. We show that in such a system the Josephson effect can be used to control its magnetic configuration.
The ac Josephson effect in a ferromagnetic Josephson junction, which is composed of two superconductors separated by a ferromagnetic metal (FM), is studied by a tunneling Hamiltonian and Greens function method. We obtain two types of superconducting phase dependent current, i.e., Josephson current and quasiparticle-pair-interference current (QPIC). These currents change their signs with thickness of the FM layer due to the 0-$pi$ transition characteristic to the ferromagnetic Josephson junction. As a function of applied voltage, the Josephson critical current shows a logarithmic divergence called the Riedel peak at the gap voltage, while the QPIC shows a discontinuous jump. The Riedel peak reverses due to the 0-$pi$ transition and disappears near the 0-$pi$ transition point. The discontinuous jump in the QPIC also represents similar behaviors to the Riedel peak. These results are in contrast to the conventional ones.
In the classical Josephson effect the phase difference across the junction is well defined, and the supercurrent is reduced only weakly by phase diffusion. For mesoscopic junctions with small capacitance the phase undergoes large quantum fluctuations, and the current is also decreased by Coulomb blockade effects. We discuss the behavior of the current-voltage characteristics in a large range of parameters comprising the phase diffusion regime with coherent Josephson current as well as the supercurrent peak due to incoherent Cooper pair tunneling in the Coulomb blockade regime.